3 | 1. Alph: Type{i} 2. St: Type{i} 3. NDA: nd_automata{i}(Alph;St) 4. Fin(St) 5. x,y:St, a:Alph. Dec( NDA(x,a,y)) 6. y:St. Dec(I(NDA) = y) 7. g: St   8. t:St. I(NDA) = t  g(t) 9. f:(St  ). Dec( s:St. f(s) & F(NDA)(s)) 10. g1: (St  )   11. t:(St  ). ( s:St. t(s) & F(NDA)(s))  g1(t) 12. f:(St  ), a:Alph, y:St. Dec( s:St. f(s) & NDA(s,a,y)) 13. g2: (St  ) Alph St   14. t:((St  ) Alph St). ( s:St. 1of(t)(s) & NDA(s,1of(2of(t)),2of(2of(t))))  g2(t) 15. g0: (St  ) Alph St   16. ds:(St  ), a:Alph, y:St. ( s:St. ds(s) & NDA(s,a,y))  g0(ds,a,y) 17. DA: Automata(Alph;St  ) L(NDA) = LangOf(DA) Prop{i'} |