PrintForm Definitions nfa 1 Sections AutomataTheory Doc

At: nd ext valcom 1 1 1 1 1 1 1 1 1

1. Alph: Type
2. St: Type
3. NDA: NDA(Alph;St)
4. C: (StAlph*)*
5. ||C|| > 0
6. i:(||C||-1). ||2of(C[i])|| > 0
7. q: St
8. a: Alph
9. p: St
10. I(NDA) = 1of(hd(C))
11. (i:(||C||-1). NDA(1of(C[i]),hd(rev(2of(C[i]))),1of(C[(i+1)])) & 2of(C[(i+1)]) = rev(tl(rev(2of(C[i]))))) & 1of(hd(rev(C))) = q & 2of(hd(rev(C))) = nil
12. NDA(q,a,p)

I(NDA) = 1of(C[0])

By: RWH (LemmaC Thm* l:T*. ||l|| > 0 hd(l) = l[0]) 10

Generated subgoals:

None


About:
equalnatural_numberuniversealllistimplies
productsubtractandapplyaddnil