rel 1 Sections StandardLIB Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Def P  Q == (P  Q) & (P  Q)

is mentioned by

Thm* R:(TTProp). 
Thm* (x,y:T. Dec(R(x,y)))
Thm* 
Thm* Linorder(T;x,y.R(x,y))  (a,b:Tstrict_part(x,y.R(x,y);a;b R(b,a))
[linorder_lt_neg]
Thm* R:(TTProp). 
Thm* Linorder(T;x,y.R(x,y))  (a,b:TR(a,b strict_part(x,y.R(x,y);b;a))
[linorder_le_neg]
Thm* R:(TTProp). 
Thm* Order(T;x,y.R(x,y))
Thm* 
Thm* (x,y:T. Dec(x = y))
Thm* 
Thm* (a,b:TR(a,b strict_part(x,y.R(x,y);a;b a = b)
[order_split]
Thm* R,R':(TTProp).
Thm* (x,y:TR(x,y R'(x,y))
Thm* 
Thm* (Linorder(T;x,y.R(x,y))  Linorder(T;x,y.R'(x,y)))
[linorder_functionality_wrt_iff]
Thm* R,R':(TTProp).
Thm* (x,y:TR(x,y R'(x,y))
Thm* 
Thm* (Order(T;x,y.R(x,y))  Order(T;x,y.R'(x,y)))
[order_functionality_wrt_iff]
Thm* R:(TTProp). 
Thm* (a,b:T. Dec(R(a,b)))
Thm* 
Thm* (Connex(T;x,y.R(x,y))
Thm* (
Thm* ((a,b:T.
Thm* ((strict_part(x,y.R(x,y);a;b)
Thm* (( Symmetrize(x,y.R(x,y);a;b)
Thm* (( strict_part(x,y.R(x,y);b;a)))
[connex_iff_trichot]
Thm* R,R':(TTProp).
Thm* (x,y:TR(x,y R'(x,y))
Thm* 
Thm* (Connex(T;x,y.R(x,y))  Connex(T;x,y.R'(x,y)))
[connex_functionality_wrt_iff]
Thm* R,R':(TTProp).
Thm* (x,y:TR(x,y R'(x,y))
Thm* 
Thm* (AntiSym(T;x,y.R(x,y))  AntiSym(T;x,y.R'(x,y)))
[anti_sym_functionality_wrt_iff]
Thm* R:(TTProp). 
Thm* (EquivRel x,y:TR(x,y))
Thm* 
Thm* (a,a',b,b':TR(a,b R(a',b' (R(a,a' R(b,b')))
[equiv_rel_self_functionality]
Thm* E:(TTProp), E':(T'T'Prop).
Thm* T = T'
Thm* 
Thm* (x,y:TE(x,y E'(x,y))
Thm* 
Thm* ((EquivRel x,y:TE(x,y))  (EquivRel x,y:T'E'(x,y)))
[equiv_rel_functionality_wrt_iff]
Thm* EquivRel A,B:Prop. A  B[equiv_rel_iff]
Thm* R:(TTProp). 
Thm* (Trans x,y:TR(x,y))
Thm* 
Thm* (a,a',b,b':T.
Thm* (Symmetrize(x,y.R(x,y);a;b)
Thm* (
Thm* (Symmetrize(x,y.R(x,y);a';b' (R(a,a' R(b,b')))
[trans_rel_func_wrt_sym_self]
Thm* R,R':(TTProp).
Thm* (x,y:TR(x,y R'(x,y))
Thm* 
Thm* ((Trans y,x:TR(x,y))  (Trans y,x:TR'(x,y)))
[trans_functionality_wrt_iff]
Thm* R,R':(TTProp).
Thm* (x,y:TR(x,y R'(x,y))
Thm* 
Thm* ((Sym x,y:TR(x,y))  (Sym x,y:TR'(x,y)))
[sym_functionality_wrt_iff]
Thm* R,R':(TTProp).
Thm* (x,y:TR(x,y R'(x,y))  (Refl(T;x,y.R(x,y))  Refl(T;x,y.R'(x,y)))
[refl_functionality_wrt_iff]
Def IsEqFun(T;eq) == x,y:T(x eq y x = y[eqfun_p]

In prior sections: core well fnd int 1 bool 1

Try larger context: StandardLIB IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

rel 1 Sections StandardLIB Doc