(8steps total)
PrintForm
Definitions
Lemmas
rel
1
Sections
StandardLIB
Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
At:
equiv
rel
functionality
wrt
iff
T
,
T'
:Type,
E
:(
T
T
Prop),
E'
:(
T'
T'
Prop).
T
=
T'
(
x
,
y
:
T
.
E
(
x
,
y
)
E'
(
x
,
y
))
((EquivRel
x
,
y
:
T
.
E
(
x
,
y
))
(EquivRel
x
,
y
:
T'
.
E'
(
x
,
y
)))
By:
UnivCD
Generated subgoal:
1
1.
T
: Type
2.
T'
: Type
3.
E
:
T
T
Prop
4.
E'
:
T'
T'
Prop
5.
T
=
T'
6.
x
,
y
:
T
.
E
(
x
,
y
)
E'
(
x
,
y
)
(EquivRel
x
,
y
:
T
.
E
(
x
,
y
))
(EquivRel
x
,
y
:
T'
.
E'
(
x
,
y
))
7
steps
About:
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
(8steps total)
PrintForm
Definitions
Lemmas
rel
1
Sections
StandardLIB
Doc