Nuprl Lemma : connex_shift

[A,B:Type]. ∀[R:A ⟶ A ⟶ ℙ]. ∀[S:B ⟶ B ⟶ ℙ].
  ∀f:A ⟶ B. (RelsIso(A;B;x,y.R[x;y];x,y.S[x;y];f)  Connex(B;x,y.S[x;y])  Connex(A;x,y.R[x;y]))


Proof




Definitions occuring in Statement :  rels_iso: RelsIso(T;T';x,y.R[x; y];x,y.R'[x; y];f) connex: Connex(T;x,y.R[x; y]) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q connex: Connex(T;x,y.R[x; y]) rels_iso: RelsIso(T;T';x,y.R[x; y];x,y.R'[x; y];f) member: t ∈ T prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q subtype_rel: A ⊆B or: P ∨ Q
Lemmas referenced :  connex_wf rels_iso_wf or_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution hypothesisEquality cut lemma_by_obid isectElimination thin sqequalRule lambdaEquality applyEquality hypothesis functionEquality cumulativity universeEquality dependent_functionElimination addLevel orFunctionality productElimination independent_functionElimination

Latex:
\mforall{}[A,B:Type].  \mforall{}[R:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[S:B  {}\mrightarrow{}  B  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}f:A  {}\mrightarrow{}  B.  (RelsIso(A;B;x,y.R[x;y];x,y.S[x;y];f)  {}\mRightarrow{}  Connex(B;x,y.S[x;y])  {}\mRightarrow{}  Connex(A;x,y.R[x;y]))



Date html generated: 2016_05_15-PM-00_03_34
Last ObjectModification: 2015_12_26-PM-11_24_48

Theory : gen_algebra_1


Home Index