Nuprl Lemma : sym_shift
∀[A,B:Type]. ∀[R:A ⟶ A ⟶ ℙ]. ∀[S:B ⟶ B ⟶ ℙ].
∀f:A ⟶ B. (RelsIso(A;B;x,y.R[x;y];x,y.S[x;y];f)
⇒ Sym(B;x,y.S[x;y])
⇒ Sym(A;x,y.R[x;y]))
Proof
Definitions occuring in Statement :
rels_iso: RelsIso(T;T';x,y.R[x; y];x,y.R'[x; y];f)
,
sym: Sym(T;x,y.E[x; y])
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
so_apply: x[s1;s2]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
sym: Sym(T;x,y.E[x; y])
,
rels_iso: RelsIso(T;T';x,y.R[x; y];x,y.R'[x; y];f)
,
member: t ∈ T
,
prop: ℙ
,
so_apply: x[s1;s2]
,
so_lambda: λ2x y.t[x; y]
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
rev_implies: P
⇐ Q
Lemmas referenced :
sym_wf,
rels_iso_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
lambdaFormation,
sqequalHypSubstitution,
applyEquality,
hypothesisEquality,
cut,
lemma_by_obid,
isectElimination,
thin,
sqequalRule,
lambdaEquality,
hypothesis,
functionEquality,
cumulativity,
universeEquality,
dependent_functionElimination,
productElimination,
independent_functionElimination,
because_Cache
Latex:
\mforall{}[A,B:Type]. \mforall{}[R:A {}\mrightarrow{} A {}\mrightarrow{} \mBbbP{}]. \mforall{}[S:B {}\mrightarrow{} B {}\mrightarrow{} \mBbbP{}].
\mforall{}f:A {}\mrightarrow{} B. (RelsIso(A;B;x,y.R[x;y];x,y.S[x;y];f) {}\mRightarrow{} Sym(B;x,y.S[x;y]) {}\mRightarrow{} Sym(A;x,y.R[x;y]))
Date html generated:
2016_05_15-PM-00_03_23
Last ObjectModification:
2015_12_26-PM-11_24_49
Theory : gen_algebra_1
Home
Index