Nuprl Lemma : xxorder_split

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].
  (order(T;R)  (∀x,y:T.  Dec(x y ∈ T))  (∀a,b:T.  (R ⇐⇒ ((R\) b) ∨ (a b ∈ T))))


Proof




Definitions occuring in Statement :  s_part: E\ xxorder: order(T;R) decidable: Dec(P) uall: [x:A]. B[x] prop: all: x:A. B[x] iff: ⇐⇒ Q implies:  Q or: P ∨ Q apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  so_apply: x[s1;s2] strict_part: strict_part(x,y.R[x; y];a;b) order: Order(T;x,y.R[x; y]) s_part: E\ xxorder: order(T;R) xxanti_sym: anti_sym(T;R) xxtrans: trans(T;E) xxrefl: refl(T;E)
Lemmas referenced :  order_split
Rules used in proof :  cut lemma_by_obid sqequalHypSubstitution sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep hypothesis

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    (order(T;R)  {}\mRightarrow{}  (\mforall{}x,y:T.    Dec(x  =  y))  {}\mRightarrow{}  (\mforall{}a,b:T.    (R  a  b  \mLeftarrow{}{}\mRightarrow{}  ((R\mbackslash{})  a  b)  \mvee{}  (a  =  b))))



Date html generated: 2016_05_15-PM-00_01_40
Last ObjectModification: 2015_12_26-PM-11_26_07

Theory : gen_algebra_1


Home Index