Nuprl Lemma : order_split

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].
  (Order(T;x,y.R[x;y])
   (∀x,y:T.  Dec(x y ∈ T))
   (∀a,b:T.  (R[a;b] ⇐⇒ strict_part(x,y.R[x;y];a;b) ∨ (a b ∈ T))))


Proof




Definitions occuring in Statement :  order: Order(T;x,y.R[x; y]) strict_part: strict_part(x,y.R[x; y];a;b) decidable: Dec(P) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q or: P ∨ Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  strict_part: strict_part(x,y.R[x; y];a;b) uall: [x:A]. B[x] implies:  Q all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q order: Order(T;x,y.R[x; y]) anti_sym: AntiSym(T;x,y.R[x; y]) trans: Trans(T;x,y.E[x; y]) refl: Refl(T;x,y.E[x; y]) member: t ∈ T prop: so_apply: x[s1;s2] rev_implies:  Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: λ2y.t[x; y] decidable: Dec(P) or: P ∨ Q cand: c∧ B not: ¬A false: False guard: {T}
Lemmas referenced :  or_wf subtype_rel_self not_wf equal_wf all_wf decidable_wf order_wf and_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :isect_memberFormation_alt,  lambdaFormation independent_pairFormation sqequalHypSubstitution productElimination thin applyEquality hypothesisEquality cut introduction extract_by_obid isectElimination productEquality hypothesis instantiate universeEquality lambdaEquality Error :functionIsType,  Error :universeIsType,  Error :inhabitedIsType,  dependent_functionElimination unionElimination inrFormation inlFormation independent_functionElimination hyp_replacement equalitySymmetry dependent_set_memberEquality applyLambdaEquality setElimination rename

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    (Order(T;x,y.R[x;y])
    {}\mRightarrow{}  (\mforall{}x,y:T.    Dec(x  =  y))
    {}\mRightarrow{}  (\mforall{}a,b:T.    (R[a;b]  \mLeftarrow{}{}\mRightarrow{}  strict\_part(x,y.R[x;y];a;b)  \mvee{}  (a  =  b))))



Date html generated: 2019_06_20-PM-00_29_53
Last ObjectModification: 2018_09_26-PM-00_04_55

Theory : rel_1


Home Index