Nuprl Lemma : xxtrans_imp_sp_trans
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  (trans(T;R) ⇒ trans(T;R\))
Proof
Definitions occuring in Statement : 
s_part: E\, 
xxtrans: trans(T;E), 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
so_apply: x[s1;s2], 
strict_part: strict_part(x,y.R[x; y];a;b), 
s_part: E\, 
xxtrans: trans(T;E)
Lemmas referenced : 
trans_imp_sp_trans
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
hypothesis
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (trans(T;R)  {}\mRightarrow{}  trans(T;R\mbackslash{}))
Date html generated:
2016_05_15-PM-00_01_41
Last ObjectModification:
2015_12_26-PM-11_26_02
Theory : gen_algebra_1
Home
Index