Nuprl Lemma : trans_imp_sp_trans

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  (Trans(T;a,b.R[a;b])  Trans(T;a,b.strict_part(x,y.R[x;y];a;b)))


Proof




Definitions occuring in Statement :  strict_part: strict_part(x,y.R[x; y];a;b) trans: Trans(T;x,y.E[x; y]) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  strict_part: strict_part(x,y.R[x; y];a;b) trans: Trans(T;x,y.E[x; y]) uall: [x:A]. B[x] implies:  Q all: x:A. B[x] and: P ∧ Q cand: c∧ B not: ¬A false: False member: t ∈ T prop: so_apply: x[s1;s2] subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] guard: {T}
Lemmas referenced :  not_wf all_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin cut independent_pairFormation hypothesis applyEquality functionExtensionality hypothesisEquality cumulativity productEquality lambdaEquality universeEquality introduction extract_by_obid isectElimination because_Cache functionEquality dependent_functionElimination independent_functionElimination voidElimination

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (Trans(T;a,b.R[a;b])  {}\mRightarrow{}  Trans(T;a,b.strict\_part(x,y.R[x;y];a;b)))



Date html generated: 2016_10_21-AM-09_42_48
Last ObjectModification: 2016_08_01-PM-09_49_05

Theory : rel_1


Home Index