Step
*
1
of Lemma
grp_op_preserves_le
1. ∀[g:OCMon]. ∀[z:|g|]. monot(|g|;x,y.↑(x ≤b y);λw.(z * w))
⊢ ∀[g:OCMon]. ∀[x,y,z:|g|]. (x * y) ≤ (x * z) supposing y ≤ z
BY
{ (Eval ``monot`` 1 ⋅ THEN Fold `grp_leq` 1 ⋅) }
1
1. ∀[g:OCMon]. ∀[z:|g|]. ∀x,y:|g|. ((x ≤ y)
⇒ ((z * x) ≤ (z * y)))
⊢ ∀[g:OCMon]. ∀[x,y,z:|g|]. (x * y) ≤ (x * z) supposing y ≤ z
Latex:
Latex:
1. \mforall{}[g:OCMon]. \mforall{}[z:|g|]. monot(|g|;x,y.\muparrow{}(x \mleq{}\msubb{} y);\mlambda{}w.(z * w))
\mvdash{} \mforall{}[g:OCMon]. \mforall{}[x,y,z:|g|]. (x * y) \mleq{} (x * z) supposing y \mleq{} z
By
Latex:
(Eval ``monot`` 1 \mcdot{} THEN Fold `grp\_leq` 1 \mcdot{})
Home
Index