Step
*
1
1
of Lemma
grp_op_preserves_le
1. ∀[g:OCMon]. ∀[z:|g|]. ∀x,y:|g|. ((x ≤ y)
⇒ ((z * x) ≤ (z * y)))
⊢ ∀[g:OCMon]. ∀[x,y,z:|g|]. (x * y) ≤ (x * z) supposing y ≤ z
BY
{ (Auto THEN HypBackchain THEN Auto) }
Latex:
Latex:
1. \mforall{}[g:OCMon]. \mforall{}[z:|g|]. \mforall{}x,y:|g|. ((x \mleq{} y) {}\mRightarrow{} ((z * x) \mleq{} (z * y)))
\mvdash{} \mforall{}[g:OCMon]. \mforall{}[x,y,z:|g|]. (x * y) \mleq{} (x * z) supposing y \mleq{} z
By
Latex:
(Auto THEN HypBackchain THEN Auto)
Home
Index