Step
*
1
1
1
of Lemma
inj_into_ocmon
1. g : GrpSig
2. h : OCMon
3. Assoc(|h|;*)
4. Ident(|h|;*;e)
5. Comm(|h|;*)
6. UniformlyRefl(|h|;x,y.↑(x ≤b y))
7. UniformlyTrans(|h|;x,y.↑(x ≤b y))
8. UniformlyAntiSym(|h|;x,y.↑(x ≤b y))
9. Connex(|h|;x,y.↑(x ≤b y))
10. Cancel(|h|;|h|;*)
11. ∀[z:|h|]. monot(|h|;x,y.↑(x ≤b y);λw.(z * w))
12. f : |g| ⟶ |h|
13. FunThru2op(|g|;|h|;*;*;f)
14. (f e) = e ∈ |h|
15. Inj(|g|;|h|;f)
16. RelsIso(|g|;|h|;x,y.↑(x =b y);x,y.↑(x =b y);f)
17. RelsIso(|g|;|h|;x,y.↑(x ≤b y);x,y.↑(x ≤b y);f)
⊢ g ∈ AbMon
BY
{ (MemTypeCD THEN Auto) }
1
1. g : GrpSig
2. h : OCMon
3. Assoc(|h|;*)
4. Ident(|h|;*;e)
5. Comm(|h|;*)
6. UniformlyRefl(|h|;x,y.↑(x ≤b y))
7. UniformlyTrans(|h|;x,y.↑(x ≤b y))
8. UniformlyAntiSym(|h|;x,y.↑(x ≤b y))
9. Connex(|h|;x,y.↑(x ≤b y))
10. Cancel(|h|;|h|;*)
11. ∀[z:|h|]. monot(|h|;x,y.↑(x ≤b y);λw.(z * w))
12. f : |g| ⟶ |h|
13. FunThru2op(|g|;|h|;*;*;f)
14. (f e) = e ∈ |h|
15. Inj(|g|;|h|;f)
16. RelsIso(|g|;|h|;x,y.↑(x =b y);x,y.↑(x =b y);f)
17. RelsIso(|g|;|h|;x,y.↑(x ≤b y);x,y.↑(x ≤b y);f)
⊢ g ∈ Mon
2
.....set predicate.....
1. g : GrpSig
2. h : OCMon
3. Assoc(|h|;*)
4. Ident(|h|;*;e)
5. Comm(|h|;*)
6. UniformlyRefl(|h|;x,y.↑(x ≤b y))
7. UniformlyTrans(|h|;x,y.↑(x ≤b y))
8. UniformlyAntiSym(|h|;x,y.↑(x ≤b y))
9. Connex(|h|;x,y.↑(x ≤b y))
10. Cancel(|h|;|h|;*)
11. ∀[z:|h|]. monot(|h|;x,y.↑(x ≤b y);λw.(z * w))
12. f : |g| ⟶ |h|
13. FunThru2op(|g|;|h|;*;*;f)
14. (f e) = e ∈ |h|
15. Inj(|g|;|h|;f)
16. RelsIso(|g|;|h|;x,y.↑(x =b y);x,y.↑(x =b y);f)
17. RelsIso(|g|;|h|;x,y.↑(x ≤b y);x,y.↑(x ≤b y);f)
⊢ Comm(|g|;*)
Latex:
Latex:
1. g : GrpSig
2. h : OCMon
3. Assoc(|h|;*)
4. Ident(|h|;*;e)
5. Comm(|h|;*)
6. UniformlyRefl(|h|;x,y.\muparrow{}(x \mleq{}\msubb{} y))
7. UniformlyTrans(|h|;x,y.\muparrow{}(x \mleq{}\msubb{} y))
8. UniformlyAntiSym(|h|;x,y.\muparrow{}(x \mleq{}\msubb{} y))
9. Connex(|h|;x,y.\muparrow{}(x \mleq{}\msubb{} y))
10. Cancel(|h|;|h|;*)
11. \mforall{}[z:|h|]. monot(|h|;x,y.\muparrow{}(x \mleq{}\msubb{} y);\mlambda{}w.(z * w))
12. f : |g| {}\mrightarrow{} |h|
13. FunThru2op(|g|;|h|;*;*;f)
14. (f e) = e
15. Inj(|g|;|h|;f)
16. RelsIso(|g|;|h|;x,y.\muparrow{}(x =\msubb{} y);x,y.\muparrow{}(x =\msubb{} y);f)
17. RelsIso(|g|;|h|;x,y.\muparrow{}(x \mleq{}\msubb{} y);x,y.\muparrow{}(x \mleq{}\msubb{} y);f)
\mvdash{} g \mmember{} AbMon
By
Latex:
(MemTypeCD THEN Auto)
Home
Index