Nuprl Lemma : inj_into_ocmon
∀[g:GrpSig]
  g ∈ OCMon 
  supposing ∃h:OCMon
             ∃f:|g| ⟶ |h|
              (IsMonHomInj(g;h;f)
              ∧ RelsIso(|g|;|h|;x,y.↑(x =b y);x,y.↑(x =b y);f)
              ∧ RelsIso(|g|;|h|;x,y.↑(x ≤b y);x,y.↑(x ≤b y);f))
Proof
Definitions occuring in Statement : 
ocmon: OCMon
, 
mon_hom_inj_p: IsMonHomInj(g;h;f)
, 
grp_le: ≤b
, 
grp_eq: =b
, 
grp_car: |g|
, 
grp_sig: GrpSig
, 
rels_iso: RelsIso(T;T';x,y.R[x; y];x,y.R'[x; y];f)
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
infix_ap: x f y
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
ocmon: OCMon
, 
abmonoid: AbMon
, 
mon: Mon
, 
prop: ℙ
, 
so_lambda: λ2x y.t[x; y]
, 
infix_ap: x f y
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
mon_hom_inj_p: IsMonHomInj(g;h;f)
, 
ulinorder: UniformLinorder(T;x,y.R[x; y])
, 
monoid_p: IsMonoid(T;op;id)
, 
monoid_hom_p: IsMonHom{M1,M2}(f)
, 
uorder: UniformOrder(T;x,y.R[x; y])
, 
monoid_hom: MonHom(M1,M2)
, 
cand: A c∧ B
, 
monot: monot(T;x,y.R[x; y];f)
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
bfalse: ff
, 
band: p ∧b q
, 
ifthenelse: if b then t else f fi 
, 
rels_iso: RelsIso(T;T';x,y.R[x; y];x,y.R'[x; y];f)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
subtype_rel: A ⊆r B
, 
urefl: UniformlyRefl(T;x,y.E[x; y])
, 
uanti_sym: UniformlyAntiSym(T;x,y.R[x; y])
, 
fun_thru_2op: FunThru2op(A;B;opa;opb;f)
, 
fun_thru_1op: fun_thru_1op(A;B;opa;opb;f)
Lemmas referenced : 
ocmon_wf, 
grp_car_wf, 
mon_hom_inj_p_wf, 
rels_iso_wf, 
assert_wf, 
grp_eq_wf, 
grp_le_wf, 
grp_sig_wf, 
ocmon_properties, 
abmonoid_properties, 
mon_properties, 
comm_wf, 
grp_op_wf, 
monoid_p_wf, 
grp_id_wf, 
assoc_shift, 
ident_mon_hom_shift, 
monoid_hom_p_wf, 
comm_shift, 
assert_witness, 
infix_ap_wf, 
bool_wf, 
istype-assert, 
urefl_shift, 
utrans_shift, 
uanti_sym_shift, 
connex_shift, 
iff_imp_equal_bool, 
bool_cases, 
subtype_base_sq, 
bool_subtype_base, 
eqtt_to_assert, 
band_wf, 
btrue_wf, 
bfalse_wf, 
iff_weakening_uiff, 
equal_wf, 
assert_of_mon_eq, 
abdmonoid_dmon, 
ocmon_subtype_abdmonoid, 
subtype_rel_transitivity, 
abdmonoid_wf, 
dmon_wf, 
assert_of_band, 
cancel_shift, 
monot_shift, 
ulinorder_wf, 
cancel_wf, 
monot_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
productIsType, 
universeIsType, 
extract_by_obid, 
functionIsType, 
isectElimination, 
hypothesisEquality, 
setElimination, 
rename, 
lambdaEquality_alt, 
applyEquality, 
inhabitedIsType, 
because_Cache, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
dependent_functionElimination, 
applyLambdaEquality, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
independent_isectElimination, 
independent_functionElimination, 
functionIsTypeImplies, 
functionExtensionality_alt, 
unionElimination, 
instantiate, 
lambdaFormation_alt, 
promote_hyp, 
equalityIstype, 
cumulativity, 
productEquality, 
hyp_replacement, 
baseApply, 
closedConclusion, 
baseClosed, 
sqequalBase, 
isectIsType
Latex:
\mforall{}[g:GrpSig]
    g  \mmember{}  OCMon 
    supposing  \mexists{}h:OCMon
                          \mexists{}f:|g|  {}\mrightarrow{}  |h|
                            (IsMonHomInj(g;h;f)
                            \mwedge{}  RelsIso(|g|;|h|;x,y.\muparrow{}(x  =\msubb{}  y);x,y.\muparrow{}(x  =\msubb{}  y);f)
                            \mwedge{}  RelsIso(|g|;|h|;x,y.\muparrow{}(x  \mleq{}\msubb{}  y);x,y.\muparrow{}(x  \mleq{}\msubb{}  y);f))
Date html generated:
2019_10_15-AM-10_32_50
Last ObjectModification:
2018_11_27-AM-10_30_58
Theory : groups_1
Home
Index