Nuprl Lemma : inj_into_ocmon

[g:GrpSig]
  g ∈ OCMon 
  supposing ∃h:OCMon
             ∃f:|g| ⟶ |h|
              (IsMonHomInj(g;h;f)
              ∧ RelsIso(|g|;|h|;x,y.↑(x =b y);x,y.↑(x =b y);f)
              ∧ RelsIso(|g|;|h|;x,y.↑(x ≤b y);x,y.↑(x ≤b y);f))


Proof




Definitions occuring in Statement :  ocmon: OCMon mon_hom_inj_p: IsMonHomInj(g;h;f) grp_le: b grp_eq: =b grp_car: |g| grp_sig: GrpSig rels_iso: RelsIso(T;T';x,y.R[x; y];x,y.R'[x; y];f) assert: b uimplies: supposing a uall: [x:A]. B[x] infix_ap: y exists: x:A. B[x] and: P ∧ Q member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a exists: x:A. B[x] and: P ∧ Q ocmon: OCMon abmonoid: AbMon mon: Mon prop: so_lambda: λ2y.t[x; y] infix_ap: y so_apply: x[s1;s2] all: x:A. B[x] mon_hom_inj_p: IsMonHomInj(g;h;f) ulinorder: UniformLinorder(T;x,y.R[x; y]) monoid_p: IsMonoid(T;op;id) monoid_hom_p: IsMonHom{M1,M2}(f) uorder: UniformOrder(T;x,y.R[x; y]) monoid_hom: MonHom(M1,M2) cand: c∧ B monot: monot(T;x,y.R[x; y];f) implies:  Q or: P ∨ Q sq_type: SQType(T) guard: {T} uiff: uiff(P;Q) bfalse: ff band: p ∧b q ifthenelse: if then else fi  rels_iso: RelsIso(T;T';x,y.R[x; y];x,y.R'[x; y];f) iff: ⇐⇒ Q rev_implies:  Q subtype_rel: A ⊆B urefl: UniformlyRefl(T;x,y.E[x; y]) uanti_sym: UniformlyAntiSym(T;x,y.R[x; y]) fun_thru_2op: FunThru2op(A;B;opa;opb;f) fun_thru_1op: fun_thru_1op(A;B;opa;opb;f)
Lemmas referenced :  ocmon_wf grp_car_wf mon_hom_inj_p_wf rels_iso_wf assert_wf grp_eq_wf grp_le_wf grp_sig_wf ocmon_properties abmonoid_properties mon_properties comm_wf grp_op_wf monoid_p_wf grp_id_wf assoc_shift ident_mon_hom_shift monoid_hom_p_wf comm_shift assert_witness infix_ap_wf bool_wf istype-assert urefl_shift utrans_shift uanti_sym_shift connex_shift iff_imp_equal_bool bool_cases subtype_base_sq bool_subtype_base eqtt_to_assert band_wf btrue_wf bfalse_wf iff_weakening_uiff equal_wf assert_of_mon_eq abdmonoid_dmon ocmon_subtype_abdmonoid subtype_rel_transitivity abdmonoid_wf dmon_wf assert_of_band cancel_shift monot_shift ulinorder_wf cancel_wf monot_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution productElimination thin hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry productIsType universeIsType extract_by_obid functionIsType isectElimination hypothesisEquality setElimination rename lambdaEquality_alt applyEquality inhabitedIsType because_Cache isect_memberEquality_alt isectIsTypeImplies dependent_functionElimination applyLambdaEquality dependent_set_memberEquality_alt independent_pairFormation independent_isectElimination independent_functionElimination functionIsTypeImplies functionExtensionality_alt unionElimination instantiate lambdaFormation_alt promote_hyp equalityIstype cumulativity productEquality hyp_replacement baseApply closedConclusion baseClosed sqequalBase isectIsType

Latex:
\mforall{}[g:GrpSig]
    g  \mmember{}  OCMon 
    supposing  \mexists{}h:OCMon
                          \mexists{}f:|g|  {}\mrightarrow{}  |h|
                            (IsMonHomInj(g;h;f)
                            \mwedge{}  RelsIso(|g|;|h|;x,y.\muparrow{}(x  =\msubb{}  y);x,y.\muparrow{}(x  =\msubb{}  y);f)
                            \mwedge{}  RelsIso(|g|;|h|;x,y.\muparrow{}(x  \mleq{}\msubb{}  y);x,y.\muparrow{}(x  \mleq{}\msubb{}  y);f))



Date html generated: 2019_10_15-AM-10_32_50
Last ObjectModification: 2018_11_27-AM-10_30_58

Theory : groups_1


Home Index