Nuprl Lemma : ident_mon_hom_shift
∀[g,h:GrpSig]. ∀[f:MonHom(g,h)].  (Ident(|g|;*;e)) supposing (Ident(|h|;*;e) and Inj(|g|;|h|;f))
Proof
Definitions occuring in Statement : 
monoid_hom: MonHom(M1,M2)
, 
grp_id: e
, 
grp_op: *
, 
grp_car: |g|
, 
grp_sig: GrpSig
, 
ident: Ident(T;op;id)
, 
inject: Inj(A;B;f)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
ident: Ident(T;op;id)
, 
inject: Inj(A;B;f)
, 
monoid_hom_p: IsMonHom{M1,M2}(f)
, 
and: P ∧ Q
, 
fun_thru_2op: FunThru2op(A;B;opa;opb;f)
, 
prop: ℙ
, 
monoid_hom: MonHom(M1,M2)
, 
all: ∀x:A. B[x]
, 
infix_ap: x f y
, 
implies: P 
⇒ Q
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
monoid_hom_properties, 
grp_car_wf, 
ident_wf, 
grp_op_wf, 
grp_id_wf, 
inject_wf, 
monoid_hom_wf, 
grp_sig_wf, 
equal_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
productElimination, 
sqequalRule, 
independent_pairEquality, 
axiomEquality, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
setElimination, 
rename, 
independent_pairFormation, 
dependent_functionElimination, 
applyEquality, 
independent_functionElimination, 
lambdaEquality, 
imageElimination, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination
Latex:
\mforall{}[g,h:GrpSig].  \mforall{}[f:MonHom(g,h)].    (Ident(|g|;*;e))  supposing  (Ident(|h|;*;e)  and  Inj(|g|;|h|;f))
Date html generated:
2017_10_01-AM-08_14_09
Last ObjectModification:
2017_02_28-PM-01_58_34
Theory : groups_1
Home
Index