Nuprl Lemma : monot_shift

[A,B:Type]. ∀[R:A ⟶ A ⟶ ℙ]. ∀[S:B ⟶ B ⟶ ℙ].
  ∀opa:A ⟶ A. ∀opb:B ⟶ B. ∀f:A ⟶ B.
    RelsIso(A;B;x,y.R[x;y];x,y.S[x;y];f)  monot(B;x,y.S[x;y];opb)  monot(A;x,y.R[x;y];opa) 
    supposing fun_thru_1op(A;B;opa;opb;f)


Proof




Definitions occuring in Statement :  rels_iso: RelsIso(T;T';x,y.R[x; y];x,y.R'[x; y];f) monot: monot(T;x,y.R[x; y];f) fun_thru_1op: fun_thru_1op(A;B;opa;opb;f) uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  so_apply: x[s1;s2] uall: [x:A]. B[x] all: x:A. B[x] uimplies: supposing a member: t ∈ T fun_thru_1op: fun_thru_1op(A;B;opa;opb;f) implies:  Q monot: monot(T;x,y.R[x; y];f) rels_iso: RelsIso(T;T';x,y.R[x; y];x,y.R'[x; y];f) prop: so_lambda: λ2y.t[x; y] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q subtype_rel: A ⊆B guard: {T}
Lemmas referenced :  monot_wf rels_iso_wf fun_thru_1op_wf iff_transitivity iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation cut introduction sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality axiomEquality hypothesis rename applyEquality lemma_by_obid lambdaEquality functionEquality cumulativity universeEquality independent_functionElimination independent_pairFormation dependent_functionElimination productElimination because_Cache equalityTransitivity equalitySymmetry independent_isectElimination

Latex:
\mforall{}[A,B:Type].  \mforall{}[R:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[S:B  {}\mrightarrow{}  B  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}opa:A  {}\mrightarrow{}  A.  \mforall{}opb:B  {}\mrightarrow{}  B.  \mforall{}f:A  {}\mrightarrow{}  B.
        RelsIso(A;B;x,y.R[x;y];x,y.S[x;y];f)  {}\mRightarrow{}  monot(B;x,y.S[x;y];opb)  {}\mRightarrow{}  monot(A;x,y.R[x;y];opa) 
        supposing  fun\_thru\_1op(A;B;opa;opb;f)



Date html generated: 2016_05_15-PM-00_03_46
Last ObjectModification: 2015_12_26-PM-11_24_54

Theory : gen_algebra_1


Home Index