Nuprl Lemma : monot_shift
∀[A,B:Type]. ∀[R:A ⟶ A ⟶ ℙ]. ∀[S:B ⟶ B ⟶ ℙ].
  ∀opa:A ⟶ A. ∀opb:B ⟶ B. ∀f:A ⟶ B.
    RelsIso(A;B;x,y.R[x;y];x,y.S[x;y];f) 
⇒ monot(B;x,y.S[x;y];opb) 
⇒ monot(A;x,y.R[x;y];opa) 
    supposing fun_thru_1op(A;B;opa;opb;f)
Proof
Definitions occuring in Statement : 
rels_iso: RelsIso(T;T';x,y.R[x; y];x,y.R'[x; y];f)
, 
monot: monot(T;x,y.R[x; y];f)
, 
fun_thru_1op: fun_thru_1op(A;B;opa;opb;f)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
so_apply: x[s1;s2]
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
fun_thru_1op: fun_thru_1op(A;B;opa;opb;f)
, 
implies: P 
⇒ Q
, 
monot: monot(T;x,y.R[x; y];f)
, 
rels_iso: RelsIso(T;T';x,y.R[x; y];x,y.R'[x; y];f)
, 
prop: ℙ
, 
so_lambda: λ2x y.t[x; y]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
subtype_rel: A ⊆r B
, 
guard: {T}
Lemmas referenced : 
monot_wf, 
rels_iso_wf, 
fun_thru_1op_wf, 
iff_transitivity, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
axiomEquality, 
hypothesis, 
rename, 
applyEquality, 
lemma_by_obid, 
lambdaEquality, 
functionEquality, 
cumulativity, 
universeEquality, 
independent_functionElimination, 
independent_pairFormation, 
dependent_functionElimination, 
productElimination, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination
Latex:
\mforall{}[A,B:Type].  \mforall{}[R:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[S:B  {}\mrightarrow{}  B  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}opa:A  {}\mrightarrow{}  A.  \mforall{}opb:B  {}\mrightarrow{}  B.  \mforall{}f:A  {}\mrightarrow{}  B.
        RelsIso(A;B;x,y.R[x;y];x,y.S[x;y];f)  {}\mRightarrow{}  monot(B;x,y.S[x;y];opb)  {}\mRightarrow{}  monot(A;x,y.R[x;y];opa) 
        supposing  fun\_thru\_1op(A;B;opa;opb;f)
Date html generated:
2016_05_15-PM-00_03_46
Last ObjectModification:
2015_12_26-PM-11_24_54
Theory : gen_algebra_1
Home
Index