Nuprl Lemma : mon_hom_inj_p_wf

[g,h:GrpSig]. ∀[f:|g| ⟶ |h|].  (IsMonHomInj(g;h;f) ∈ ℙ)


Proof




Definitions occuring in Statement :  mon_hom_inj_p: IsMonHomInj(g;h;f) grp_car: |g| grp_sig: GrpSig uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  mon_hom_inj_p: IsMonHomInj(g;h;f) uall: [x:A]. B[x] member: t ∈ T
Lemmas referenced :  and_wf monoid_hom_p_wf inject_wf grp_car_wf grp_sig_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry functionEquality isect_memberEquality because_Cache

Latex:
\mforall{}[g,h:GrpSig].  \mforall{}[f:|g|  {}\mrightarrow{}  |h|].    (IsMonHomInj(g;h;f)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_15-PM-00_09_49
Last ObjectModification: 2015_12_26-PM-11_45_05

Theory : groups_1


Home Index