Nuprl Lemma : assoc_shift
∀[A,B:Type]. ∀[opa:A ⟶ A ⟶ A]. ∀[opb:B ⟶ B ⟶ B]. ∀[f:A ⟶ B].
  (Assoc(A;opa)) supposing (Assoc(B;opb) and FunThru2op(A;B;opa;opb;f) and Inj(A;B;f))
Proof
Definitions occuring in Statement : 
fun_thru_2op: FunThru2op(A;B;opa;opb;f)
, 
assoc: Assoc(T;op)
, 
inject: Inj(A;B;f)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
assoc: Assoc(T;op)
, 
fun_thru_2op: FunThru2op(A;B;opa;opb;f)
, 
inject: Inj(A;B;f)
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
infix_ap: x f y
, 
implies: P 
⇒ Q
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
assoc_wf, 
fun_thru_2op_wf, 
inject_wf, 
equal_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
hypothesisEquality, 
sqequalRule, 
isect_memberEquality, 
isectElimination, 
thin, 
axiomEquality, 
because_Cache, 
extract_by_obid, 
cumulativity, 
functionExtensionality, 
applyEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
universeEquality, 
dependent_functionElimination, 
independent_functionElimination, 
lambdaEquality, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
productElimination
Latex:
\mforall{}[A,B:Type].  \mforall{}[opa:A  {}\mrightarrow{}  A  {}\mrightarrow{}  A].  \mforall{}[opb:B  {}\mrightarrow{}  B  {}\mrightarrow{}  B].  \mforall{}[f:A  {}\mrightarrow{}  B].
    (Assoc(A;opa))  supposing  (Assoc(B;opb)  and  FunThru2op(A;B;opa;opb;f)  and  Inj(A;B;f))
Date html generated:
2017_10_01-AM-08_13_01
Last ObjectModification:
2017_02_28-PM-01_57_09
Theory : gen_algebra_1
Home
Index