Nuprl Lemma : int_hgrp_el_wf
∀[n:ℕ]. (zhgrp(n) ∈ |(<ℤ+>↓hgrp)|)
Proof
Definitions occuring in Statement :
int_hgrp_el: zhgrp(n)
,
int_add_grp: <ℤ+>
,
hgrp_of_ocgrp: g↓hgrp
,
grp_car: |g|
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
Definitions unfolded in proof :
int_hgrp_el: zhgrp(n)
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
subtype_rel: A ⊆r B
Lemmas referenced :
nat_subtype,
nat_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
isect_memberFormation,
introduction,
cut,
hypothesisEquality,
applyEquality,
thin,
lemma_by_obid,
hypothesis,
sqequalHypSubstitution,
axiomEquality,
equalityTransitivity,
equalitySymmetry
Latex:
\mforall{}[n:\mBbbN{}]. (zhgrp(n) \mmember{} |(<\mBbbZ{}+>\mdownarrow{}hgrp)|)
Date html generated:
2016_05_15-PM-00_19_27
Last ObjectModification:
2015_12_26-PM-11_37_29
Theory : groups_1
Home
Index