Nuprl Lemma : int_hgrp_el_wf
∀[n:ℕ]. (zhgrp(n) ∈ |(<ℤ+>↓hgrp)|)
Proof
Definitions occuring in Statement : 
int_hgrp_el: zhgrp(n)
, 
int_add_grp: <ℤ+>
, 
hgrp_of_ocgrp: g↓hgrp
, 
grp_car: |g|
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
int_hgrp_el: zhgrp(n)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
nat_subtype, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
hypothesisEquality, 
applyEquality, 
thin, 
lemma_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[n:\mBbbN{}].  (zhgrp(n)  \mmember{}  |(<\mBbbZ{}+>\mdownarrow{}hgrp)|)
Date html generated:
2016_05_15-PM-00_19_27
Last ObjectModification:
2015_12_26-PM-11_37_29
Theory : groups_1
Home
Index