Nuprl Lemma : mon_itop_unroll_unit
∀[g:IMonoid]. ∀[i,j:ℤ].  ∀[E:{i..j-} ⟶ |g|]. ((Π i ≤ k < j. E[k]) = E[i] ∈ |g|) supposing (i + 1) = j ∈ ℤ
Proof
Definitions occuring in Statement : 
mon_itop: Π lb ≤ i < ub. E[i]
, 
imon: IMonoid
, 
grp_car: |g|
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
mon_itop: Π lb ≤ i < ub. E[i]
Lemmas referenced : 
itop_unroll_unit
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
hypothesis
Latex:
\mforall{}[g:IMonoid].  \mforall{}[i,j:\mBbbZ{}].    \mforall{}[E:\{i..j\msupminus{}\}  {}\mrightarrow{}  |g|].  ((\mPi{}  i  \mleq{}  k  <  j.  E[k])  =  E[i])  supposing  (i  +  1)  =  j
Date html generated:
2016_05_15-PM-00_16_01
Last ObjectModification:
2015_12_26-PM-11_40_01
Theory : groups_1
Home
Index