Nuprl Lemma : itop_unroll_unit

[g:IMonoid]. ∀[i,j:ℤ].  ∀[E:{i..j-} ⟶ |g|]. (*,e) i ≤ k < j. E[k] E[i] ∈ |g|) supposing (i 1) j ∈ ℤ


Proof




Definitions occuring in Statement :  itop: Π(op,id) lb ≤ i < ub. E[i] imon: IMonoid grp_id: e grp_op: * grp_car: |g| int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a imon: IMonoid prop: subtype_rel: A ⊆B squash: T all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top and: P ∧ Q so_lambda: λ2x.t[x] so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q infix_ap: y
Lemmas referenced :  int_seg_wf grp_car_wf equal-wf-base int_subtype_base imon_wf equal_wf squash_wf true_wf itop_unroll_hi decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermVar_wf intformeq_wf itermAdd_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_wf decidable__le intformle_wf int_formula_prop_le_lemma lelt_wf iff_weakening_equal grp_op_wf itop_unroll_base subtract_wf decidable__equal_int itermSubtract_wf int_term_value_subtract_lemma mon_ident
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis functionEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality setElimination rename sqequalRule isect_memberEquality axiomEquality because_Cache intEquality baseApply closedConclusion baseClosed applyEquality equalityTransitivity equalitySymmetry lambdaEquality imageElimination universeEquality independent_isectElimination dependent_functionElimination unionElimination natural_numberEquality dependent_pairFormation int_eqEquality voidElimination voidEquality independent_pairFormation computeAll functionExtensionality dependent_set_memberEquality imageMemberEquality productElimination independent_functionElimination

Latex:
\mforall{}[g:IMonoid].  \mforall{}[i,j:\mBbbZ{}].    \mforall{}[E:\{i..j\msupminus{}\}  {}\mrightarrow{}  |g|].  (\mPi{}(*,e)  i  \mleq{}  k  <  j.  E[k]  =  E[i])  supposing  (i  +  1)  =  j



Date html generated: 2017_10_01-AM-08_15_41
Last ObjectModification: 2017_02_28-PM-02_00_30

Theory : groups_1


Home Index