Nuprl Lemma : ocmon_connex
∀g:OCMon. ∀x,y:|g|. ((↑(x ≤b y)) ∨ (↑(y ≤b x)))
Proof
Definitions occuring in Statement :
ocmon: OCMon
,
grp_le: ≤b
,
grp_car: |g|
,
assert: ↑b
,
infix_ap: x f y
,
all: ∀x:A. B[x]
,
or: P ∨ Q
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
member: t ∈ T
,
and: P ∧ Q
,
ulinorder: UniformLinorder(T;x,y.R[x; y])
,
uorder: UniformOrder(T;x,y.R[x; y])
,
eqfun_p: IsEqFun(T;eq)
,
monot: monot(T;x,y.R[x; y];f)
,
cancel: Cancel(T;S;op)
,
connex: Connex(T;x,y.R[x; y])
,
uanti_sym: UniformlyAntiSym(T;x,y.R[x; y])
,
utrans: UniformlyTrans(T;x,y.E[x; y])
,
urefl: UniformlyRefl(T;x,y.E[x; y])
Lemmas referenced :
ocmon_properties,
ocmon_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
cut,
lemma_by_obid,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
hypothesisEquality,
hypothesis,
productElimination,
sqequalRule
Latex:
\mforall{}g:OCMon. \mforall{}x,y:|g|. ((\muparrow{}(x \mleq{}\msubb{} y)) \mvee{} (\muparrow{}(y \mleq{}\msubb{} x)))
Date html generated:
2016_05_15-PM-00_11_21
Last ObjectModification:
2015_12_26-PM-11_43_31
Theory : groups_1
Home
Index