Nuprl Lemma : ocmon_connex
∀g:OCMon. ∀x,y:|g|.  ((↑(x ≤b y)) ∨ (↑(y ≤b x)))
Proof
Definitions occuring in Statement : 
ocmon: OCMon, 
grp_le: ≤b, 
grp_car: |g|, 
assert: ↑b, 
infix_ap: x f y, 
all: ∀x:A. B[x], 
or: P ∨ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
and: P ∧ Q, 
ulinorder: UniformLinorder(T;x,y.R[x; y]), 
uorder: UniformOrder(T;x,y.R[x; y]), 
eqfun_p: IsEqFun(T;eq), 
monot: monot(T;x,y.R[x; y];f), 
cancel: Cancel(T;S;op), 
connex: Connex(T;x,y.R[x; y]), 
uanti_sym: UniformlyAntiSym(T;x,y.R[x; y]), 
utrans: UniformlyTrans(T;x,y.E[x; y]), 
urefl: UniformlyRefl(T;x,y.E[x; y])
Lemmas referenced : 
ocmon_properties, 
ocmon_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
productElimination, 
sqequalRule
Latex:
\mforall{}g:OCMon.  \mforall{}x,y:|g|.    ((\muparrow{}(x  \mleq{}\msubb{}  y))  \mvee{}  (\muparrow{}(y  \mleq{}\msubb{}  x)))
Date html generated:
2016_05_15-PM-00_11_21
Last ObjectModification:
2015_12_26-PM-11_43_31
Theory : groups_1
Home
Index