Step * 2 of Lemma omon_properties


1. AbMon
2. UniformLinorder(|g|;x,y.↑(x ≤b y))
3. =b x,y. ((x ≤b y) ∧b (y ≤b x))) ∈ (|g| ⟶ |g| ⟶ 𝔹)
4. UniformLinorder(|g|;x,y.↑(x ≤b y))
⊢ IsEqFun(|g|;=b)
BY
((HypSubst (-2) THEN Auto) THEN THEN Reduce THEN Auto) }

1
1. AbMon
2. UniformLinorder(|g|;x,y.↑(x ≤b y))
3. =b x,y. ((x ≤b y) ∧b (y ≤b x))) ∈ (|g| ⟶ |g| ⟶ 𝔹)
4. UniformLinorder(|g|;x,y.↑(x ≤b y))
5. |g|
6. |g|
7. ↑((x ≤b y) ∧b (y ≤b x))
⊢ y ∈ |g|


Latex:


Latex:

1.  g  :  AbMon
2.  UniformLinorder(|g|;x,y.\muparrow{}(x  \mleq{}\msubb{}  y))
3.  =\msubb{}  =  (\mlambda{}x,y.  ((x  \mleq{}\msubb{}  y)  \mwedge{}\msubb{}  (y  \mleq{}\msubb{}  x)))
4.  UniformLinorder(|g|;x,y.\muparrow{}(x  \mleq{}\msubb{}  y))
\mvdash{}  IsEqFun(|g|;=\msubb{})


By


Latex:
((HypSubst  (-2)  0  THEN  Auto)  THEN  D  0  THEN  Reduce  0  THEN  Auto)




Home Index