Step * 1 of Lemma quot_grp_inv_wf


1. IGroup
2. |g| ⟶ ℙ
3. SubGrp of g ∧ norm_subset_p(g;h)
⊢ ~ ∈ |g//h| ⟶ |g//h|
BY
(ExtWith [`v'] [⌜|g| ⟶ |g|⌝]⋅ THEN Try (Complete (Auto))) }

1
1. IGroup
2. |g| ⟶ ℙ
3. SubGrp of g ∧ norm_subset_p(g;h)
4. |g//h|
⊢ v ∈ |g//h|


Latex:


Latex:

1.  g  :  IGroup
2.  h  :  |g|  {}\mrightarrow{}  \mBbbP{}
3.  h  SubGrp  of  g  \mwedge{}  norm\_subset\_p(g;h)
\mvdash{}  \msim{}  \mmember{}  |g//h|  {}\mrightarrow{}  |g//h|


By


Latex:
(ExtWith  [`v']  [\mkleeneopen{}|g|  {}\mrightarrow{}  |g|\mkleeneclose{}]\mcdot{}  THEN  Try  (Complete  (Auto)))




Home Index