Nuprl Lemma : quot_grp_inv_wf
∀g:IGroup. ∀h:NormSubGrp{i}(g).  (~ ∈ |g//h| ⟶ |g//h|)
Proof
Definitions occuring in Statement : 
quot_grp_car: |g//h|
, 
norm_subgrp: NormSubGrp{i}(g)
, 
igrp: IGroup
, 
grp_inv: ~
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
norm_subgrp: NormSubGrp{i}(g)
, 
uall: ∀[x:A]. B[x]
, 
igrp: IGroup
, 
imon: IMonoid
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
prop: ℙ
, 
quot_grp_car: |g//h|
, 
quotient: x,y:A//B[x; y]
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
guard: {T}
, 
subgrp_p: s SubGrp of g
, 
eqv_mod_subset: a ≡ b (mod s in g)
, 
norm_subset_p: norm_subset_p(g;s)
, 
infix_ap: x f y
, 
true: True
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
norm_subgrp_wf, 
igrp_wf, 
grp_inv_wf, 
quot_grp_car_wf, 
subgrp_p_wf, 
grp_car_wf, 
norm_subset_p_wf, 
eqv_mod_subset_wf, 
equal_wf, 
equal-wf-base, 
quotient-member-eq, 
eqv_mod_subset_is_eqv, 
grp_op_wf, 
infix_ap_wf, 
squash_wf, 
true_wf, 
grp_inv_thru_op, 
grp_inv_inv, 
mon_assoc, 
grp_inv_assoc, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
hypothesis, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
functionExtensionality, 
productElimination, 
dependent_functionElimination, 
independent_pairFormation, 
dependent_set_memberEquality, 
productEquality, 
applyEquality, 
because_Cache, 
pointwiseFunctionalityForEquality, 
sqequalRule, 
pertypeElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
lambdaEquality, 
independent_isectElimination, 
hyp_replacement, 
natural_numberEquality, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}g:IGroup.  \mforall{}h:NormSubGrp\{i\}(g).    (\msim{}  \mmember{}  |g//h|  {}\mrightarrow{}  |g//h|)
Date html generated:
2017_10_01-AM-08_13_55
Last ObjectModification:
2017_02_28-PM-01_58_29
Theory : groups_1
Home
Index