Nuprl Lemma : norm_subgrp_wf

[g:GrpSig]. (NormSubGrp{i}(g) ∈ 𝕌')


Proof




Definitions occuring in Statement :  norm_subgrp: NormSubGrp{i}(g) grp_sig: GrpSig uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  norm_subgrp: NormSubGrp{i}(g) uall: [x:A]. B[x] member: t ∈ T prop: and: P ∧ Q
Lemmas referenced :  grp_car_wf and_wf subgrp_p_wf norm_subset_p_wf grp_sig_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut setEquality functionEquality cumulativity lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis universeEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[g:GrpSig].  (NormSubGrp\{i\}(g)  \mmember{}  \mBbbU{}')



Date html generated: 2016_05_15-PM-00_08_58
Last ObjectModification: 2015_12_26-PM-11_45_35

Theory : groups_1


Home Index