Nuprl Lemma : norm_subgrp_wf
∀[g:GrpSig]. (NormSubGrp{i}(g) ∈ 𝕌')
Proof
Definitions occuring in Statement : 
norm_subgrp: NormSubGrp{i}(g)
, 
grp_sig: GrpSig
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
norm_subgrp: NormSubGrp{i}(g)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
and: P ∧ Q
Lemmas referenced : 
grp_car_wf, 
and_wf, 
subgrp_p_wf, 
norm_subset_p_wf, 
grp_sig_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
setEquality, 
functionEquality, 
cumulativity, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
universeEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[g:GrpSig].  (NormSubGrp\{i\}(g)  \mmember{}  \mBbbU{}')
Date html generated:
2016_05_15-PM-00_08_58
Last ObjectModification:
2015_12_26-PM-11_45_35
Theory : groups_1
Home
Index