Nuprl Lemma : norm_subset_p_wf

[g:GrpSig]. ∀[s:|g| ⟶ ℙ].  (norm_subset_p(g;s) ∈ ℙ)


Proof




Definitions occuring in Statement :  norm_subset_p: norm_subset_p(g;s) grp_car: |g| grp_sig: GrpSig uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  norm_subset_p: norm_subset_p(g;s) uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] implies:  Q prop: infix_ap: y so_apply: x[s]
Lemmas referenced :  all_wf grp_car_wf grp_op_wf grp_inv_wf grp_sig_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaEquality functionEquality applyEquality axiomEquality equalityTransitivity equalitySymmetry cumulativity universeEquality isect_memberEquality because_Cache

Latex:
\mforall{}[g:GrpSig].  \mforall{}[s:|g|  {}\mrightarrow{}  \mBbbP{}].    (norm\_subset\_p(g;s)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_15-PM-00_08_53
Last ObjectModification: 2015_12_26-PM-11_45_39

Theory : groups_1


Home Index