Nuprl Lemma : eqv_mod_subset_wf

[g:GrpSig]. ∀[s:|g| ⟶ ℙ]. ∀[a,b:|g|].  (a ≡ (mod in g) ∈ ℙ)


Proof




Definitions occuring in Statement :  eqv_mod_subset: a ≡ (mod in g) grp_car: |g| grp_sig: GrpSig uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  eqv_mod_subset: a ≡ (mod in g) uall: [x:A]. B[x] member: t ∈ T infix_ap: y prop:
Lemmas referenced :  grp_op_wf grp_inv_wf grp_car_wf grp_sig_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut applyEquality hypothesisEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache functionEquality cumulativity universeEquality

Latex:
\mforall{}[g:GrpSig].  \mforall{}[s:|g|  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[a,b:|g|].    (a  \mequiv{}  b  (mod  s  in  g)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_15-PM-00_09_03
Last ObjectModification: 2015_12_26-PM-11_45_32

Theory : groups_1


Home Index