Nuprl Lemma : quot_grp_car_wf

g:IGroup. ∀h:NormSubGrp{i}(g).  (|g//h| ∈ Type)


Proof




Definitions occuring in Statement :  quot_grp_car: |g//h| norm_subgrp: NormSubGrp{i}(g) igrp: IGroup all: x:A. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T norm_subgrp: NormSubGrp{i}(g) quot_grp_car: |g//h| and: P ∧ Q uall: [x:A]. B[x] igrp: IGroup imon: IMonoid so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a implies:  Q prop: guard: {T} subgrp_p: SubGrp of g
Lemmas referenced :  quotient_wf grp_car_wf eqv_mod_subset_wf eqv_mod_subset_is_eqv norm_subgrp_wf igrp_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalHypSubstitution setElimination thin rename productElimination lemma_by_obid isectElimination hypothesisEquality hypothesis sqequalRule lambdaEquality because_Cache independent_isectElimination dependent_functionElimination independent_functionElimination applyEquality

Latex:
\mforall{}g:IGroup.  \mforall{}h:NormSubGrp\{i\}(g).    (|g//h|  \mmember{}  Type)



Date html generated: 2016_05_15-PM-00_09_19
Last ObjectModification: 2015_12_26-PM-11_45_40

Theory : groups_1


Home Index