Nuprl Lemma : eqv_mod_subset_is_eqv

g:IGroup
  ∀[s:|g| ⟶ ℙ]
    ((s e)
     (∀a:|g|. ((s a)  (s (~ a))))
     (∀a,b:|g|.  ((s a)  (s b)  (s (a b))))
     EquivRel(|g|;x,y.x ≡ (mod in g)))


Proof




Definitions occuring in Statement :  eqv_mod_subset: a ≡ (mod in g) igrp: IGroup grp_inv: ~ grp_id: e grp_op: * grp_car: |g| equiv_rel: EquivRel(T;x,y.E[x; y]) uall: [x:A]. B[x] prop: infix_ap: y all: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] implies:  Q member: t ∈ T prop: igrp: IGroup imon: IMonoid so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] eqv_mod_subset: a ≡ (mod in g) equiv_rel: EquivRel(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y]) sym: Sym(T;x,y.E[x; y]) refl: Refl(T;x,y.E[x; y]) and: P ∧ Q cand: c∧ B infix_ap: y uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  all_wf grp_car_wf infix_ap_wf grp_op_wf grp_inv_wf grp_id_wf igrp_wf grp_inverse iff_weakening_equal grp_inv_thru_op grp_inv_inv mon_assoc grp_inv_assoc
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis sqequalRule lambdaEquality because_Cache functionEquality applyEquality universeEquality cumulativity independent_pairFormation productElimination equalityTransitivity equalitySymmetry independent_isectElimination independent_functionElimination dependent_functionElimination

Latex:
\mforall{}g:IGroup
    \mforall{}[s:|g|  {}\mrightarrow{}  \mBbbP{}]
        ((s  e)
        {}\mRightarrow{}  (\mforall{}a:|g|.  ((s  a)  {}\mRightarrow{}  (s  (\msim{}  a))))
        {}\mRightarrow{}  (\mforall{}a,b:|g|.    ((s  a)  {}\mRightarrow{}  (s  b)  {}\mRightarrow{}  (s  (a  *  b))))
        {}\mRightarrow{}  EquivRel(|g|;x,y.x  \mequiv{}  y  (mod  s  in  g)))



Date html generated: 2016_05_15-PM-00_09_07
Last ObjectModification: 2015_12_26-PM-11_46_12

Theory : groups_1


Home Index