Nuprl Lemma : basic-padic_wf
∀[p:ℤ]. (basic-padic(p) ∈ Type)
Proof
Definitions occuring in Statement : 
basic-padic: basic-padic(p)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int: ℤ
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
basic-padic: basic-padic(p)
Lemmas referenced : 
nat_wf, 
p-adics_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
productEquality, 
extract_by_obid, 
hypothesis, 
thin, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
intEquality
Latex:
\mforall{}[p:\mBbbZ{}].  (basic-padic(p)  \mmember{}  Type)
Date html generated:
2018_05_21-PM-03_23_31
Last ObjectModification:
2018_05_19-AM-08_21_42
Theory : rings_1
Home
Index