Step
*
2
of Lemma
greatest-p-zero-property
.....upcase.....
1. p : ℕ+
2. a : p-adics(p)
3. n : ℤ
4. 0 < n
5. (greatest-p-zero(n - 1;a) ≤ (n - 1))
∧ (∀i:ℕ+(n - 1) + 1
(((i ≤ greatest-p-zero(n - 1;a))
⇒ ((a i) = 0 ∈ ℤ)) ∧ (greatest-p-zero(n - 1;a) < i
⇒ (¬((a i) = 0 ∈ ℤ)))))
⊢ (greatest-p-zero(n;a) ≤ n)
∧ (∀i:ℕ+n + 1. (((i ≤ greatest-p-zero(n;a))
⇒ ((a i) = 0 ∈ ℤ)) ∧ (greatest-p-zero(n;a) < i
⇒ (¬((a i) = 0 ∈ ℤ)))))
BY
{ ((Unfold `greatest-p-zero` 0 THEN (RWO "primrec-unroll" 0 THENA Auto))
THEN Reduce 0
THEN Fold `greatest-p-zero` 0
THEN (Assert 0 < n BY
(Unhide THEN Auto))
THEN (OReduce 0 THENA Auto)
THEN (Subst' (n - 1) + 1 ~ n 0 THENA Auto)
THEN (BoolCase ⌜(a n =z 0)⌝⋅ THENA Auto)
THEN BoolCase ⌜n <z 1⌝⋅
THEN Auto) }
1
1. p : ℕ+
2. a : p-adics(p)
3. n : ℤ
4. ¬n < 1
5. 0 < n
6. greatest-p-zero(n - 1;a) ≤ (n - 1)
7. ∀i:ℕ+(n - 1) + 1
(((i ≤ greatest-p-zero(n - 1;a))
⇒ ((a i) = 0 ∈ ℤ)) ∧ (greatest-p-zero(n - 1;a) < i
⇒ (¬((a i) = 0 ∈ ℤ))))
8. 0 < n
9. (a n) = 0 ∈ ℤ
10. n ≤ n
11. i : ℕ+n + 1
12. i ≤ n
⊢ (a i) = 0 ∈ ℤ
2
1. p : ℕ+
2. a : p-adics(p)
3. n : ℤ
4. ¬n < 1
5. a n ≠ 0
6. 0 < n
7. greatest-p-zero(n - 1;a) ≤ (n - 1)
8. ∀i:ℕ+(n - 1) + 1
(((i ≤ greatest-p-zero(n - 1;a))
⇒ ((a i) = 0 ∈ ℤ)) ∧ (greatest-p-zero(n - 1;a) < i
⇒ (¬((a i) = 0 ∈ ℤ))))
9. 0 < n
10. greatest-p-zero(n - 1;a) ≤ n
11. i : ℕ+n + 1
12. (i ≤ greatest-p-zero(n - 1;a))
⇒ ((a i) = 0 ∈ ℤ)
13. greatest-p-zero(n - 1;a) < i
⊢ ¬((a i) = 0 ∈ ℤ)
Latex:
Latex:
.....upcase.....
1. p : \mBbbN{}\msupplus{}
2. a : p-adics(p)
3. n : \mBbbZ{}
4. 0 < n
5. (greatest-p-zero(n - 1;a) \mleq{} (n - 1))
\mwedge{} (\mforall{}i:\mBbbN{}\msupplus{}(n - 1) + 1
(((i \mleq{} greatest-p-zero(n - 1;a)) {}\mRightarrow{} ((a i) = 0))
\mwedge{} (greatest-p-zero(n - 1;a) < i {}\mRightarrow{} (\mneg{}((a i) = 0)))))
\mvdash{} (greatest-p-zero(n;a) \mleq{} n)
\mwedge{} (\mforall{}i:\mBbbN{}\msupplus{}n + 1
(((i \mleq{} greatest-p-zero(n;a)) {}\mRightarrow{} ((a i) = 0)) \mwedge{} (greatest-p-zero(n;a) < i {}\mRightarrow{} (\mneg{}((a i) = 0)))))
By
Latex:
((Unfold `greatest-p-zero` 0 THEN (RWO "primrec-unroll" 0 THENA Auto))
THEN Reduce 0
THEN Fold `greatest-p-zero` 0
THEN (Assert 0 < n BY
(Unhide THEN Auto))
THEN (OReduce 0 THENA Auto)
THEN (Subst' (n - 1) + 1 \msim{} n 0 THENA Auto)
THEN (BoolCase \mkleeneopen{}(a n =\msubz{} 0)\mkleeneclose{}\mcdot{} THENA Auto)
THEN BoolCase \mkleeneopen{}n <z 1\mkleeneclose{}\mcdot{}
THEN Auto)
Home
Index