Nuprl Lemma : greatest-p-zero-property
∀p:ℕ+. ∀a:p-adics(p). ∀n:ℕ.
  ((greatest-p-zero(n;a) ≤ n)
  ∧ (∀i:ℕ+n + 1. (((i ≤ greatest-p-zero(n;a)) 
⇒ ((a i) = 0 ∈ ℤ)) ∧ (greatest-p-zero(n;a) < i 
⇒ (¬((a i) = 0 ∈ ℤ))))))
Proof
Definitions occuring in Statement : 
greatest-p-zero: greatest-p-zero(n;a)
, 
p-adics: p-adics(p)
, 
int_seg: {i..j-}
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
less_than: a < b
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
apply: f a
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
le: A ≤ B
, 
p-adics: p-adics(p)
, 
nat_plus: ℕ+
, 
subtype_rel: A ⊆r B
, 
int_seg: {i..j-}
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
less_than': less_than'(a;b)
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
true: True
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
greatest-p-zero: greatest-p-zero(n;a)
, 
primrec: primrec(n;b;c)
, 
cand: A c∧ B
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
nequal: a ≠ b ∈ T 
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
less_than'_wf, 
greatest-p-zero_wf, 
nat_plus_properties, 
le_wf, 
int_seg_properties, 
itermAdd_wf, 
int_term_value_add_lemma, 
equal-wf-T-base, 
less_than_transitivity1, 
less_than_irreflexivity, 
int_seg_wf, 
exp_wf2, 
int_seg_subtype_nat, 
false_wf, 
sq_stable__le, 
less-iff-le, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-associates, 
zero-add, 
add_functionality_wrt_le, 
add-commutes, 
le-add-cancel2, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
decidable__lt, 
not-lt-2, 
le-add-cancel, 
nat_wf, 
p-adics_wf, 
nat_plus_wf, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
subtract-add-cancel, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
eq_int_wf, 
assert_of_eq_int, 
add-zero, 
neg_assert_of_eq_int, 
not-equal-2, 
lelt_wf, 
primrec-unroll, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
p-adic-non-decreasing, 
int_subtype_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
productElimination, 
independent_pairEquality, 
because_Cache, 
applyEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
addEquality, 
dependent_set_memberEquality, 
baseClosed, 
imageMemberEquality, 
imageElimination, 
minusEquality, 
applyLambdaEquality, 
unionElimination, 
equalityElimination, 
promote_hyp, 
instantiate, 
cumulativity
Latex:
\mforall{}p:\mBbbN{}\msupplus{}.  \mforall{}a:p-adics(p).  \mforall{}n:\mBbbN{}.
    ((greatest-p-zero(n;a)  \mleq{}  n)
    \mwedge{}  (\mforall{}i:\mBbbN{}\msupplus{}n  +  1
              (((i  \mleq{}  greatest-p-zero(n;a))  {}\mRightarrow{}  ((a  i)  =  0))
              \mwedge{}  (greatest-p-zero(n;a)  <  i  {}\mRightarrow{}  (\mneg{}((a  i)  =  0))))))
Date html generated:
2018_05_21-PM-03_22_12
Last ObjectModification:
2018_05_19-AM-08_21_03
Theory : rings_1
Home
Index