Nuprl Lemma : greatest-p-zero-property

p:ℕ+. ∀a:p-adics(p). ∀n:ℕ.
  ((greatest-p-zero(n;a) ≤ n)
  ∧ (∀i:ℕ+1. (((i ≤ greatest-p-zero(n;a))  ((a i) 0 ∈ ℤ)) ∧ (greatest-p-zero(n;a) <  ((a i) 0 ∈ ℤ))))))


Proof




Definitions occuring in Statement :  greatest-p-zero: greatest-p-zero(n;a) p-adics: p-adics(p) int_seg: {i..j-} nat_plus: + nat: less_than: a < b le: A ≤ B all: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q apply: a add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: le: A ≤ B p-adics: p-adics(p) nat_plus: + subtype_rel: A ⊆B int_seg: {i..j-} guard: {T} lelt: i ≤ j < k less_than': less_than'(a;b) sq_stable: SqStable(P) squash: T uiff: uiff(P;Q) subtract: m true: True decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q greatest-p-zero: greatest-p-zero(n;a) primrec: primrec(n;b;c) cand: c∧ B bool: 𝔹 unit: Unit it: btrue: tt bfalse: ff sq_type: SQType(T) bnot: ¬bb ifthenelse: if then else fi  assert: b nequal: a ≠ b ∈ 
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf less_than'_wf greatest-p-zero_wf nat_plus_properties le_wf int_seg_properties itermAdd_wf int_term_value_add_lemma equal-wf-T-base less_than_transitivity1 less_than_irreflexivity int_seg_wf exp_wf2 int_seg_subtype_nat false_wf sq_stable__le less-iff-le condition-implies-le minus-add minus-one-mul add-swap minus-one-mul-top add-associates zero-add add_functionality_wrt_le add-commutes le-add-cancel2 decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma decidable__lt not-lt-2 le-add-cancel nat_wf p-adics_wf nat_plus_wf lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int subtract-add-cancel eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot eq_int_wf assert_of_eq_int add-zero neg_assert_of_eq_int not-equal-2 lelt_wf primrec-unroll decidable__equal_int intformeq_wf int_formula_prop_eq_lemma p-adic-non-decreasing int_subtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation productElimination independent_pairEquality because_Cache applyEquality axiomEquality equalityTransitivity equalitySymmetry addEquality dependent_set_memberEquality baseClosed imageMemberEquality imageElimination minusEquality applyLambdaEquality unionElimination equalityElimination promote_hyp instantiate cumulativity

Latex:
\mforall{}p:\mBbbN{}\msupplus{}.  \mforall{}a:p-adics(p).  \mforall{}n:\mBbbN{}.
    ((greatest-p-zero(n;a)  \mleq{}  n)
    \mwedge{}  (\mforall{}i:\mBbbN{}\msupplus{}n  +  1
              (((i  \mleq{}  greatest-p-zero(n;a))  {}\mRightarrow{}  ((a  i)  =  0))
              \mwedge{}  (greatest-p-zero(n;a)  <  i  {}\mRightarrow{}  (\mneg{}((a  i)  =  0))))))



Date html generated: 2018_05_21-PM-03_22_12
Last ObjectModification: 2018_05_19-AM-08_21_03

Theory : rings_1


Home Index