Step
*
of Lemma
idom_alt_char
∀r:CRng
((∀x,y:|r|. Dec(x = y ∈ |r|))
⇒ (IsIntegDom(r)
⇐⇒ 0 ≠ 1 ∈ |r| ∧ (∀u,v:|r|. (u = 0 ∈ |r|) ∨ (v = 0 ∈ |r|) supposing (u * v) = 0 ∈ |r|)))
BY
{ Unfold `integ_dom_p` 0
THEN GenUnivCD THENA Auto }
1
1. r : CRng
2. ∀x,y:|r|. Dec(x = y ∈ |r|)
3. 0 ≠ 1 ∈ |r| ∧ (∀u,v:|r|. ((¬(v = 0 ∈ |r|))
⇒ ((u * v) = 0 ∈ |r|)
⇒ (u = 0 ∈ |r|)))
⊢ 0 ≠ 1 ∈ |r|
2
1. r : CRng
2. ∀x,y:|r|. Dec(x = y ∈ |r|)
3. 0 ≠ 1 ∈ |r| ∧ (∀u,v:|r|. ((¬(v = 0 ∈ |r|))
⇒ ((u * v) = 0 ∈ |r|)
⇒ (u = 0 ∈ |r|)))
4. u : |r|
5. v : |r|
6. (u * v) = 0 ∈ |r|
⊢ (u = 0 ∈ |r|) ∨ (v = 0 ∈ |r|)
3
1. r : CRng
2. ∀x,y:|r|. Dec(x = y ∈ |r|)
3. 0 ≠ 1 ∈ |r| ∧ (∀u,v:|r|. (u = 0 ∈ |r|) ∨ (v = 0 ∈ |r|) supposing (u * v) = 0 ∈ |r|)
⊢ 0 ≠ 1 ∈ |r|
4
1. r : CRng
2. ∀x,y:|r|. Dec(x = y ∈ |r|)
3. 0 ≠ 1 ∈ |r| ∧ (∀u,v:|r|. (u = 0 ∈ |r|) ∨ (v = 0 ∈ |r|) supposing (u * v) = 0 ∈ |r|)
4. u : |r|
5. v : |r|
6. ¬(v = 0 ∈ |r|)
7. (u * v) = 0 ∈ |r|
⊢ u = 0 ∈ |r|
Latex:
Latex:
\mforall{}r:CRng
((\mforall{}x,y:|r|. Dec(x = y))
{}\mRightarrow{} (IsIntegDom(r) \mLeftarrow{}{}\mRightarrow{} 0 \mneq{} 1 \mmember{} |r| \mwedge{} (\mforall{}u,v:|r|. (u = 0) \mvee{} (v = 0) supposing (u * v) = 0)))
By
Latex:
Unfold `integ\_dom\_p` 0
THEN GenUnivCD THENA Auto
Home
Index