Step
*
1
of Lemma
p-adic-non-decreasing
1. p : ℕ+
2. a : p-adics(p)
3. n : ℕ+
4. i : ℕ+n + 1
⊢ (a i) ≤ (a n)
BY
{ Assert ⌜∀d:ℕ. ((a i) ≤ (a (i + d)))⌝⋅ }
1
.....assertion.....
1. p : ℕ+
2. a : p-adics(p)
3. n : ℕ+
4. i : ℕ+n + 1
⊢ ∀d:ℕ. ((a i) ≤ (a (i + d)))
2
1. p : ℕ+
2. a : p-adics(p)
3. n : ℕ+
4. i : ℕ+n + 1
5. ∀d:ℕ. ((a i) ≤ (a (i + d)))
⊢ (a i) ≤ (a n)
Latex:
Latex:
1. p : \mBbbN{}\msupplus{}
2. a : p-adics(p)
3. n : \mBbbN{}\msupplus{}
4. i : \mBbbN{}\msupplus{}n + 1
\mvdash{} (a i) \mleq{} (a n)
By
Latex:
Assert \mkleeneopen{}\mforall{}d:\mBbbN{}. ((a i) \mleq{} (a (i + d)))\mkleeneclose{}\mcdot{}
Home
Index