Step
*
of Lemma
p-int-injection
∀[p:{2...}]. Inj(ℤ;p-adics(p);λk.k(p))
BY
{ (Auto THEN Assert ⌜∀k:ℤ. ∃n:ℕ+. ((∀m:{n...}. ((k(p) m) = (p^m + k) ∈ ℤ)) ∨ (∀m:{n...}. ((k(p) m) = k ∈ ℤ)))⌝⋅) }
1
.....assertion.....
1. p : {2...}
⊢ ∀k:ℤ. ∃n:ℕ+. ((∀m:{n...}. ((k(p) m) = (p^m + k) ∈ ℤ)) ∨ (∀m:{n...}. ((k(p) m) = k ∈ ℤ)))
2
1. p : {2...}
2. ∀k:ℤ. ∃n:ℕ+. ((∀m:{n...}. ((k(p) m) = (p^m + k) ∈ ℤ)) ∨ (∀m:{n...}. ((k(p) m) = k ∈ ℤ)))
⊢ Inj(ℤ;p-adics(p);λk.k(p))
Latex:
Latex:
\mforall{}[p:\{2...\}]. Inj(\mBbbZ{};p-adics(p);\mlambda{}k.k(p))
By
Latex:
(Auto
THEN Assert \mkleeneopen{}\mforall{}k:\mBbbZ{}. \mexists{}n:\mBbbN{}\msupplus{}. ((\mforall{}m:\{n...\}. ((k(p) m) = (p\^{}m + k))) \mvee{} (\mforall{}m:\{n...\}. ((k(p) m) = k)))\mkleeneclose{}\mcdot{}
)
Home
Index