Nuprl Lemma : p-int-injection
∀[p:{2...}]. Inj(ℤ;p-adics(p);λk.k(p))
Proof
Definitions occuring in Statement : 
p-int: k(p)
, 
p-adics: p-adics(p)
, 
inject: Inj(A;B;f)
, 
int_upper: {i...}
, 
uall: ∀[x:A]. B[x]
, 
lambda: λx.A[x]
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
inject: Inj(A;B;f)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
int_upper: {i...}
, 
nat_plus: ℕ+
, 
le: A ≤ B
, 
and: P ∧ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
false: False
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
less_than': less_than'(a;b)
, 
true: True
, 
nat: ℕ
, 
exists: ∃x:A. B[x]
, 
guard: {T}
, 
so_lambda: λ2x.t[x]
, 
p-adics: p-adics(p)
, 
int_seg: {i..j-}
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
so_apply: x[s]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
ge: i ≥ j 
, 
lelt: i ≤ j < k
, 
cand: A c∧ B
, 
less_than: a < b
Lemmas referenced : 
equal_wf, 
p-adics_wf, 
p-int_wf, 
decidable__lt, 
false_wf, 
not-lt-2, 
add_functionality_wrt_le, 
add-commutes, 
zero-add, 
le-add-cancel, 
less_than_wf, 
int_upper_wf, 
decidable__le, 
p-int-eventually-constant, 
le_wf, 
all_wf, 
less_than_transitivity1, 
int_seg_wf, 
exp_wf2, 
upper_subtype_nat, 
sq_stable__le, 
le_weakening2, 
or_wf, 
equal-wf-T-base, 
int_subtype_base, 
p-minus-int-eventually, 
int_upper_properties, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermMinus_wf, 
itermVar_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_minus_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
squash_wf, 
true_wf, 
nat_plus_wf, 
minus-minus, 
nat_plus_properties, 
decidable__equal_int, 
subtract-is-int-iff, 
intformeq_wf, 
itermAdd_wf, 
itermSubtract_wf, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
int_term_value_subtract_lemma, 
imax_wf, 
imax_ub, 
subtype_rel_self, 
iff_weakening_equal, 
imax_nat_plus, 
imax_nat, 
nat_plus_subtype_nat, 
nat_wf, 
nat_properties, 
int_seg_properties, 
add-is-int-iff, 
add_nat_plus, 
add_nat_wf, 
exp-increasing
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
axiomEquality, 
hypothesis, 
extract_by_obid, 
isectElimination, 
setElimination, 
rename, 
because_Cache, 
dependent_set_memberEquality, 
productElimination, 
natural_numberEquality, 
unionElimination, 
independent_pairFormation, 
lambdaFormation, 
voidElimination, 
independent_functionElimination, 
independent_isectElimination, 
applyEquality, 
isect_memberEquality, 
voidEquality, 
intEquality, 
dependent_pairFormation, 
inrFormation, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
addEquality, 
minusEquality, 
approximateComputation, 
int_eqEquality, 
inlFormation, 
hyp_replacement, 
equalitySymmetry, 
equalityTransitivity, 
universeEquality, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion, 
instantiate, 
applyLambdaEquality
Latex:
\mforall{}[p:\{2...\}].  Inj(\mBbbZ{};p-adics(p);\mlambda{}k.k(p))
Date html generated:
2018_05_21-PM-03_19_26
Last ObjectModification:
2018_05_19-AM-08_11_21
Theory : rings_1
Home
Index