Nuprl Lemma : p-int-injection

[p:{2...}]. Inj(ℤ;p-adics(p);λk.k(p))


Proof




Definitions occuring in Statement :  p-int: k(p) p-adics: p-adics(p) inject: Inj(A;B;f) int_upper: {i...} uall: [x:A]. B[x] lambda: λx.A[x] natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T inject: Inj(A;B;f) all: x:A. B[x] implies:  Q int_upper: {i...} nat_plus: + le: A ≤ B and: P ∧ Q decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q false: False prop: uiff: uiff(P;Q) uimplies: supposing a subtype_rel: A ⊆B top: Top less_than': less_than'(a;b) true: True nat: exists: x:A. B[x] guard: {T} so_lambda: λ2x.t[x] p-adics: p-adics(p) int_seg: {i..j-} sq_stable: SqStable(P) squash: T so_apply: x[s] satisfiable_int_formula: satisfiable_int_formula(fmla) ge: i ≥  lelt: i ≤ j < k cand: c∧ B less_than: a < b
Lemmas referenced :  equal_wf p-adics_wf p-int_wf decidable__lt false_wf not-lt-2 add_functionality_wrt_le add-commutes zero-add le-add-cancel less_than_wf int_upper_wf decidable__le p-int-eventually-constant le_wf all_wf less_than_transitivity1 int_seg_wf exp_wf2 upper_subtype_nat sq_stable__le le_weakening2 or_wf equal-wf-T-base int_subtype_base p-minus-int-eventually int_upper_properties full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermMinus_wf itermVar_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_minus_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_wf squash_wf true_wf nat_plus_wf minus-minus nat_plus_properties decidable__equal_int subtract-is-int-iff intformeq_wf itermAdd_wf itermSubtract_wf int_formula_prop_eq_lemma int_term_value_add_lemma int_term_value_subtract_lemma imax_wf imax_ub subtype_rel_self iff_weakening_equal imax_nat_plus imax_nat nat_plus_subtype_nat nat_wf nat_properties int_seg_properties add-is-int-iff add_nat_plus add_nat_wf exp-increasing
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality axiomEquality hypothesis extract_by_obid isectElimination setElimination rename because_Cache dependent_set_memberEquality productElimination natural_numberEquality unionElimination independent_pairFormation lambdaFormation voidElimination independent_functionElimination independent_isectElimination applyEquality isect_memberEquality voidEquality intEquality dependent_pairFormation inrFormation imageMemberEquality baseClosed imageElimination addEquality minusEquality approximateComputation int_eqEquality inlFormation hyp_replacement equalitySymmetry equalityTransitivity universeEquality pointwiseFunctionality promote_hyp baseApply closedConclusion instantiate applyLambdaEquality

Latex:
\mforall{}[p:\{2...\}].  Inj(\mBbbZ{};p-adics(p);\mlambda{}k.k(p))



Date html generated: 2018_05_21-PM-03_19_26
Last ObjectModification: 2018_05_19-AM-08_11_21

Theory : rings_1


Home Index