Nuprl Lemma : exp-increasing

[b:{2...}]. ∀[i:ℕ].  ∀j:ℕb^i < b^j supposing i < j


Proof




Definitions occuring in Statement :  exp: i^n int_upper: {i...} nat: less_than: a < b uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] uimplies: supposing a nat: decidable: Dec(P) or: P ∨ Q sq_type: SQType(T) implies:  Q guard: {T} prop: int_upper: {i...} top: Top nat_plus: + rev_implies:  Q iff: ⇐⇒ Q subtype_rel: A ⊆B true: True squash: T and: P ∧ Q not: ¬A false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) ge: i ≥  less_than: a < b less_than': less_than'(a;b) uiff: uiff(P;Q) le: A ≤ B
Lemmas referenced :  decidable__equal_int subtype_base_sq int_subtype_base less_than_wf nat_wf member-less_than exp_wf2 int_upper_wf exp0_lemma exp-ge-1 less_than_transitivity2 le_weakening iff_weakening_equal true_wf squash_wf int_term_value_add_lemma int_formula_prop_eq_lemma itermAdd_wf intformeq_wf le_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermSubtract_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le int_upper_properties nat_properties subtract_wf exp_add decidable__lt int_term_value_mul_lemma itermMultiply_wf multiply-is-int-iff le-add-cancel zero-add add-commutes add_functionality_wrt_le not-lt-2 false_wf exp_wf_nat_plus mul_preserves_lt
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation extract_by_obid sqequalHypSubstitution dependent_functionElimination thin setElimination rename because_Cache hypothesis natural_numberEquality unionElimination instantiate isectElimination cumulativity intEquality independent_isectElimination independent_functionElimination hypothesisEquality sqequalRule lambdaEquality isect_memberEquality equalityTransitivity equalitySymmetry voidElimination voidEquality dependent_set_memberEquality productElimination universeEquality baseClosed imageMemberEquality imageElimination applyEquality computeAll independent_pairFormation int_eqEquality dependent_pairFormation closedConclusion baseApply promote_hyp pointwiseFunctionality

Latex:
\mforall{}[b:\{2...\}].  \mforall{}[i:\mBbbN{}].    \mforall{}j:\mBbbN{}.  b\^{}i  <  b\^{}j  supposing  i  <  j



Date html generated: 2017_04_14-AM-09_22_37
Last ObjectModification: 2017_02_24-PM-06_03_27

Theory : int_2


Home Index