Nuprl Lemma : p-int_wf

[p:ℕ+]. ∀[k:ℤ].  (k(p) ∈ p-adics(p))


Proof




Definitions occuring in Statement :  p-int: k(p) p-adics: p-adics(p) nat_plus: + uall: [x:A]. B[x] member: t ∈ T int:
Definitions unfolded in proof :  p-adics: p-adics(p) uall: [x:A]. B[x] member: t ∈ T p-int: k(p) subtype_rel: A ⊆B all: x:A. B[x] so_lambda: λ2x.t[x] nat_plus: + decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q not: ¬A rev_implies:  Q implies:  Q false: False prop: uiff: uiff(P;Q) uimplies: supposing a subtract: m top: Top le: A ≤ B less_than': less_than'(a;b) true: True int_seg: {i..j-} nat: guard: {T} satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] lelt: i ≤ j < k so_apply: x[s] int_upper: {i...}
Lemmas referenced :  p-reduce_wf nat_plus_wf all_wf eqmod_wf exp_wf2 decidable__lt false_wf not-lt-2 less-iff-le condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel less_than_wf int_seg_wf int_seg_properties nat_plus_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf nat_plus_subtype_nat p-reduce-eqmod-exp eqmod_functionality_wrt_eqmod eqmod_weakening p-reduce-eqmod
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut dependent_set_memberEquality lambdaEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality because_Cache hypothesis lambdaFormation setElimination rename addEquality natural_numberEquality dependent_functionElimination unionElimination independent_pairFormation voidElimination productElimination independent_functionElimination independent_isectElimination isect_memberEquality voidEquality intEquality minusEquality approximateComputation dependent_pairFormation int_eqEquality equalityTransitivity equalitySymmetry applyLambdaEquality axiomEquality

Latex:
\mforall{}[p:\mBbbN{}\msupplus{}].  \mforall{}[k:\mBbbZ{}].    (k(p)  \mmember{}  p-adics(p))



Date html generated: 2018_05_21-PM-03_18_50
Last ObjectModification: 2018_05_19-AM-08_09_43

Theory : rings_1


Home Index