Nuprl Lemma : p-reduce_wf
∀[p:ℕ+]. ∀[n:ℕ]. ∀[i:ℤ].  (i mod(p^n) ∈ ℕp^n)
Proof
Definitions occuring in Statement : 
p-reduce: i mod(p^n)
, 
exp: i^n
, 
int_seg: {i..j-}
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
p-reduce: i mod(p^n)
, 
subtype_rel: A ⊆r B
, 
nat_plus: ℕ+
Lemmas referenced : 
modulus_wf_int_mod, 
exp_wf_nat_plus, 
int-subtype-int_mod, 
exp_wf2, 
nat_wf, 
nat_plus_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
setElimination, 
rename, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
intEquality, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[p:\mBbbN{}\msupplus{}].  \mforall{}[n:\mBbbN{}].  \mforall{}[i:\mBbbZ{}].    (i  mod(p\^{}n)  \mmember{}  \mBbbN{}p\^{}n)
Date html generated:
2018_05_21-PM-03_17_51
Last ObjectModification:
2018_05_19-AM-08_08_48
Theory : rings_1
Home
Index