Nuprl Lemma : p-reduce_wf

[p:ℕ+]. ∀[n:ℕ]. ∀[i:ℤ].  (i mod(p^n) ∈ ℕp^n)


Proof




Definitions occuring in Statement :  p-reduce: mod(p^n) exp: i^n int_seg: {i..j-} nat_plus: + nat: uall: [x:A]. B[x] member: t ∈ T natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T p-reduce: mod(p^n) subtype_rel: A ⊆B nat_plus: +
Lemmas referenced :  modulus_wf_int_mod exp_wf_nat_plus int-subtype-int_mod exp_wf2 nat_wf nat_plus_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality setElimination rename axiomEquality equalityTransitivity equalitySymmetry intEquality isect_memberEquality because_Cache

Latex:
\mforall{}[p:\mBbbN{}\msupplus{}].  \mforall{}[n:\mBbbN{}].  \mforall{}[i:\mBbbZ{}].    (i  mod(p\^{}n)  \mmember{}  \mBbbN{}p\^{}n)



Date html generated: 2018_05_21-PM-03_17_51
Last ObjectModification: 2018_05_19-AM-08_08_48

Theory : rings_1


Home Index