Nuprl Lemma : p-reduce-eqmod-exp

p:ℕ+. ∀n:ℕ. ∀m:{n...}. ∀z:ℤ.  (z mod(p^m) ≡ mod p^n)


Proof




Definitions occuring in Statement :  p-reduce: mod(p^n) eqmod: a ≡ mod m exp: i^n int_upper: {i...} nat_plus: + nat: all: x:A. B[x] int:
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat: uimplies: supposing a int_upper: {i...} so_lambda: λ2x.t[x] so_apply: x[s] guard: {T} nat_plus: + ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: and: P ∧ Q sq_type: SQType(T) p-reduce: mod(p^n) label: ...$L... t uiff: uiff(P;Q) subtype_rel: A ⊆B true: True squash: T int_seg: {i..j-} lelt: i ≤ j < k iff: ⇐⇒ Q rev_implies:  Q eqmod: a ≡ mod m divides: a le: A ≤ B int_nzero: -o nequal: a ≠ b ∈ 
Lemmas referenced :  subtype_base_sq int_upper_wf set_subtype_base le_wf int_subtype_base int_upper_properties nat_properties nat_plus_properties decidable__equal_int subtract_wf full-omega-unsat intformnot_wf intformeq_wf itermVar_wf itermAdd_wf itermSubtract_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_subtract_lemma int_formula_prop_wf decidable__le intformand_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_le_lemma itermConstant_wf int_term_value_constant_lemma equal_wf nat_wf nat_plus_wf exp_wf2 multiply-is-int-iff itermMultiply_wf int_term_value_mul_lemma false_wf exp-positive-stronger less_than_wf int-subtype-int_mod eqmod_wf squash_wf true_wf modulus_wf_int_mod int_mod_wf exp_add int_seg_wf int_seg_properties subtype_rel_self iff_weakening_equal mod-eqmod mul_nat_plus exp_wf_nat_plus subtract-is-int-iff mod_bounds_1 mul_nzero exp_wf3 subtype_rel_sets nequal_wf intformless_wf int_formula_prop_less_lemma equal-wf-base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination cumulativity setElimination rename because_Cache hypothesis independent_isectElimination sqequalRule lambdaEquality hypothesisEquality intEquality dependent_functionElimination addEquality unionElimination natural_numberEquality approximateComputation independent_functionElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality dependent_set_memberEquality independent_pairFormation equalityTransitivity equalitySymmetry pointwiseFunctionality promote_hyp baseApply closedConclusion baseClosed productElimination applyEquality imageElimination imageMemberEquality applyLambdaEquality universeEquality multiplyEquality setEquality

Latex:
\mforall{}p:\mBbbN{}\msupplus{}.  \mforall{}n:\mBbbN{}.  \mforall{}m:\{n...\}.  \mforall{}z:\mBbbZ{}.    (z  mod(p\^{}m)  \mequiv{}  z  mod  p\^{}n)



Date html generated: 2018_05_21-PM-03_18_06
Last ObjectModification: 2018_05_19-AM-08_09_10

Theory : rings_1


Home Index