Nuprl Lemma : p-reduce-eqmod-exp
∀p:ℕ+. ∀n:ℕ. ∀m:{n...}. ∀z:ℤ.  (z mod(p^m) ≡ z mod p^n)
Proof
Definitions occuring in Statement : 
p-reduce: i mod(p^n)
, 
eqmod: a ≡ b mod m
, 
exp: i^n
, 
int_upper: {i...}
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
uimplies: b supposing a
, 
int_upper: {i...}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
guard: {T}
, 
nat_plus: ℕ+
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
and: P ∧ Q
, 
sq_type: SQType(T)
, 
p-reduce: i mod(p^n)
, 
label: ...$L... t
, 
uiff: uiff(P;Q)
, 
subtype_rel: A ⊆r B
, 
true: True
, 
squash: ↓T
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
eqmod: a ≡ b mod m
, 
divides: b | a
, 
le: A ≤ B
, 
int_nzero: ℤ-o
, 
nequal: a ≠ b ∈ T 
Lemmas referenced : 
subtype_base_sq, 
int_upper_wf, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
int_upper_properties, 
nat_properties, 
nat_plus_properties, 
decidable__equal_int, 
subtract_wf, 
full-omega-unsat, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
itermAdd_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_subtract_lemma, 
int_formula_prop_wf, 
decidable__le, 
intformand_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
itermConstant_wf, 
int_term_value_constant_lemma, 
equal_wf, 
nat_wf, 
nat_plus_wf, 
exp_wf2, 
multiply-is-int-iff, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
false_wf, 
exp-positive-stronger, 
less_than_wf, 
int-subtype-int_mod, 
eqmod_wf, 
squash_wf, 
true_wf, 
modulus_wf_int_mod, 
int_mod_wf, 
exp_add, 
int_seg_wf, 
int_seg_properties, 
subtype_rel_self, 
iff_weakening_equal, 
mod-eqmod, 
mul_nat_plus, 
exp_wf_nat_plus, 
subtract-is-int-iff, 
mod_bounds_1, 
mul_nzero, 
exp_wf3, 
subtype_rel_sets, 
nequal_wf, 
intformless_wf, 
int_formula_prop_less_lemma, 
equal-wf-base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
independent_isectElimination, 
sqequalRule, 
lambdaEquality, 
hypothesisEquality, 
intEquality, 
dependent_functionElimination, 
addEquality, 
unionElimination, 
natural_numberEquality, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
dependent_set_memberEquality, 
independent_pairFormation, 
equalityTransitivity, 
equalitySymmetry, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion, 
baseClosed, 
productElimination, 
applyEquality, 
imageElimination, 
imageMemberEquality, 
applyLambdaEquality, 
universeEquality, 
multiplyEquality, 
setEquality
Latex:
\mforall{}p:\mBbbN{}\msupplus{}.  \mforall{}n:\mBbbN{}.  \mforall{}m:\{n...\}.  \mforall{}z:\mBbbZ{}.    (z  mod(p\^{}m)  \mequiv{}  z  mod  p\^{}n)
Date html generated:
2018_05_21-PM-03_18_06
Last ObjectModification:
2018_05_19-AM-08_09_10
Theory : rings_1
Home
Index