Step
*
4
1
1
of Lemma
quot_ring_sig
1. r : CRng
2. a : |r| ⟶ ℙ
3. a e
4. ∀a@0:|r↓+gp|. ((a a@0)
⇒ (a (~ a@0)))
5. ∀a@0,b:|r↓+gp|. ((a a@0)
⇒ (a b)
⇒ (a (a@0 * b)))
6. ∀a@0,b:|r|. ((a a@0)
⇒ (a (a@0 * b)))
7. ∀x:|r|. SqStable(a x)
8. d : |r| ⟶ 𝔹
9. ∀x:|r|. (a x
⇐⇒ a x)
10. Carrier(r/d) ∈ Type
11. x : Base
12. x1 : Base
13. x = x1 ∈ pertype(λx,y. ((x ∈ |r|) ∧ (y ∈ |r|) ∧ (↑(d (x +r (-r y))))))
14. x ∈ |r|
15. x1 ∈ |r|
16. a (x +r (-r x1))
17. y : Base
18. y1 : Base
19. y = y1 ∈ pertype(λx,y. ((x ∈ |r|) ∧ (y ∈ |r|) ∧ (↑(d (x +r (-r y))))))
20. y ∈ |r|
21. y1 ∈ |r|
22. a (y +r (-r y1))
⊢ a ((x +r y) +r (-r (x1 +r y1)))
BY
{ ((Assert a ((x +r (-r x1)) +r (y +r (-r y1))) BY
Auto)
THEN RepUR ``add_grp_of_rng`` -1
THEN (RW RngNormC (-1) THEN Auto)
THEN RW RngNormC 0
THEN Auto) }
Latex:
Latex:
1. r : CRng
2. a : |r| {}\mrightarrow{} \mBbbP{}
3. a e
4. \mforall{}a@0:|r\mdownarrow{}+gp|. ((a a@0) {}\mRightarrow{} (a (\msim{} a@0)))
5. \mforall{}a@0,b:|r\mdownarrow{}+gp|. ((a a@0) {}\mRightarrow{} (a b) {}\mRightarrow{} (a (a@0 * b)))
6. \mforall{}a@0,b:|r|. ((a a@0) {}\mRightarrow{} (a (a@0 * b)))
7. \mforall{}x:|r|. SqStable(a x)
8. d : |r| {}\mrightarrow{} \mBbbB{}
9. \mforall{}x:|r|. (a x \mLeftarrow{}{}\mRightarrow{} a x)
10. Carrier(r/d) \mmember{} Type
11. x : Base
12. x1 : Base
13. x = x1
14. x \mmember{} |r|
15. x1 \mmember{} |r|
16. a (x +r (-r x1))
17. y : Base
18. y1 : Base
19. y = y1
20. y \mmember{} |r|
21. y1 \mmember{} |r|
22. a (y +r (-r y1))
\mvdash{} a ((x +r y) +r (-r (x1 +r y1)))
By
Latex:
((Assert a ((x +r (-r x1)) +r (y +r (-r y1))) BY
Auto)
THEN RepUR ``add\_grp\_of\_rng`` -1
THEN (RW RngNormC (-1) THEN Auto)
THEN RW RngNormC 0
THEN Auto)
Home
Index