Nuprl Lemma : quot_ring_sig
∀[r:CRng]. ∀[a:Ideal(r){i}].  ((∀x:|r|. SqStable(a x)) 
⇒ (∀[d:detach_fun(|r|;a)]. (r / d ∈ RngSig)))
Proof
Definitions occuring in Statement : 
quot_ring: r / d
, 
ideal: Ideal(r){i}
, 
crng: CRng
, 
rng_car: |r|
, 
rng_sig: RngSig
, 
detach_fun: detach_fun(T;A)
, 
sq_stable: SqStable(P)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
apply: f a
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
ideal: Ideal(r){i}
, 
crng: CRng
, 
rng: Rng
, 
all: ∀x:A. B[x]
, 
guard: {T}
, 
detach_fun: detach_fun(T;A)
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
and: P ∧ Q
, 
quot_ring: r / d
, 
rng_sig: RngSig
, 
quot_ring_car: Carrier(r/d)
, 
quotient: x,y:A//B[x; y]
, 
infix_ap: x f y
, 
uimplies: b supposing a
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
trans: Trans(T;x,y.E[x; y])
, 
sym: Sym(T;x,y.E[x; y])
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
ideal_p: S Ideal of R
, 
subgrp_p: s SubGrp of g
, 
subtype_rel: A ⊆r B
, 
add_grp_of_rng: r↓+gp
, 
grp_car: |g|
, 
pi1: fst(t)
, 
grp_op: *
, 
pi2: snd(t)
Lemmas referenced : 
detach_fun_properties, 
rng_car_wf, 
quot_ring_car_wf, 
ideal_p_wf, 
all_wf, 
iff_wf, 
assert_wf, 
unit_wf2, 
bool_wf, 
detach_fun_wf, 
sq_stable_wf, 
ideal_wf, 
crng_wf, 
rng_plus_wf, 
rng_minus_wf, 
equal_wf, 
equal-wf-base, 
iff_imp_equal_bool, 
ideal-detach-equiv, 
btrue_wf, 
quotient-member-eq, 
rng_plus_assoc, 
iff_weakening_equal, 
infix_ap_wf, 
rng_minus_over_plus, 
rng_plus_comm, 
rng_plus_ac_1, 
rng_zero_wf, 
quot_ring_car_subtype, 
rng_one_wf, 
rng_minus_minus, 
rng_times_over_plus, 
rng_times_over_minus, 
rng_times_one, 
rng_times_wf, 
crng_times_comm, 
rng_plus_inv_assoc, 
it_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
dependent_functionElimination, 
dependent_set_memberEquality, 
because_Cache, 
functionExtensionality, 
applyEquality, 
sqequalRule, 
lambdaEquality, 
dependent_pairEquality, 
functionEquality, 
unionEquality, 
productEquality, 
cumulativity, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
pointwiseFunctionalityForEquality, 
pertypeElimination, 
productElimination, 
independent_isectElimination, 
independent_pairFormation, 
allFunctionality, 
promote_hyp, 
universeEquality, 
inrEquality
Latex:
\mforall{}[r:CRng].  \mforall{}[a:Ideal(r)\{i\}].
    ((\mforall{}x:|r|.  SqStable(a  x))  {}\mRightarrow{}  (\mforall{}[d:detach\_fun(|r|;a)].  (r  /  d  \mmember{}  RngSig)))
Date html generated:
2017_10_01-AM-08_17_54
Last ObjectModification:
2017_02_28-PM-02_03_58
Theory : rings_1
Home
Index