Nuprl Lemma : detach_fun_wf

[T:Type]. ∀[A:T ⟶ ℙ].  (detach_fun(T;A) ∈ Type)


Proof




Definitions occuring in Statement :  detach_fun: detach_fun(T;A) uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  detach_fun: detach_fun(T;A) uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q all: x:A. B[x] rev_implies:  Q implies:  Q and: P ∧ Q prop:
Lemmas referenced :  bool_wf all_wf iff_wf assert_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut setEquality functionEquality hypothesisEquality lemma_by_obid hypothesis sqequalHypSubstitution isectElimination thin lambdaEquality applyEquality axiomEquality equalityTransitivity equalitySymmetry cumulativity universeEquality isect_memberEquality because_Cache

Latex:
\mforall{}[T:Type].  \mforall{}[A:T  {}\mrightarrow{}  \mBbbP{}].    (detach\_fun(T;A)  \mmember{}  Type)



Date html generated: 2016_05_15-PM-00_00_22
Last ObjectModification: 2015_12_26-PM-11_26_51

Theory : gen_algebra_1


Home Index