Nuprl Lemma : detach_fun_properties

[T:Type]. ∀[A:T ⟶ ℙ].  ((∀x:T. SqStable(A x))  (∀d:detach_fun(T;A). {∀x:T. (A ⇐⇒ ↑(d x))}))


Proof




Definitions occuring in Statement :  detach_fun: detach_fun(T;A) assert: b sq_stable: SqStable(P) uall: [x:A]. B[x] prop: guard: {T} all: x:A. B[x] iff: ⇐⇒ Q implies:  Q apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] guard: {T} member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] detach_fun: detach_fun(T;A) sq_stable: SqStable(P) squash: T
Lemmas referenced :  decidable__assert sq_stable_from_decidable sq_stable__iff sq_stable__all assert_wf iff_wf sq_stable_wf all_wf detach_fun_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule lambdaEquality applyEquality functionEquality cumulativity universeEquality setElimination rename independent_functionElimination dependent_functionElimination introduction imageMemberEquality baseClosed imageElimination

Latex:
\mforall{}[T:Type].  \mforall{}[A:T  {}\mrightarrow{}  \mBbbP{}].    ((\mforall{}x:T.  SqStable(A  x))  {}\mRightarrow{}  (\mforall{}d:detach\_fun(T;A).  \{\mforall{}x:T.  (A  x  \mLeftarrow{}{}\mRightarrow{}  \muparrow{}(d  x))\}))



Date html generated: 2016_05_15-PM-00_00_24
Last ObjectModification: 2016_01_15-AM-07_08_15

Theory : gen_algebra_1


Home Index