Nuprl Lemma : ideal-detach-equiv

r:CRng. ∀a:Ideal(r){i}.  ((∀x:|r|. SqStable(a x))  (∀d:detach_fun(|r|;a). EquivRel(|r|;x,y.↑(d (x +r (-r y))))))


Proof




Definitions occuring in Statement :  ideal: Ideal(r){i} crng: CRng rng_minus: -r rng_plus: +r rng_car: |r| detach_fun: detach_fun(T;A) equiv_rel: EquivRel(T;x,y.E[x; y]) assert: b sq_stable: SqStable(P) infix_ap: y all: x:A. B[x] implies:  Q apply: a
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q uall: [x:A]. B[x] member: t ∈ T crng: CRng rng: Rng ideal: Ideal(r){i} prop: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  det_ideal_defines_eqv detach_fun_wf rng_car_wf all_wf sq_stable_wf ideal_wf crng_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_functionElimination hypothesis setElimination rename sqequalRule lambdaEquality applyEquality

Latex:
\mforall{}r:CRng.  \mforall{}a:Ideal(r)\{i\}.
    ((\mforall{}x:|r|.  SqStable(a  x))  {}\mRightarrow{}  (\mforall{}d:detach\_fun(|r|;a).  EquivRel(|r|;x,y.\muparrow{}(d  (x  +r  (-r  y))))))



Date html generated: 2016_05_15-PM-00_23_29
Last ObjectModification: 2015_12_27-AM-00_00_46

Theory : rings_1


Home Index