Nuprl Lemma : bsublist_wf
∀s:DSet. ∀as,bs:|s| List.  (bsublist(s;as;bs) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
bsublist: bsublist(s;as;bs), 
list: T List, 
bool: 𝔹, 
all: ∀x:A. B[x], 
member: t ∈ T, 
dset: DSet, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
bsublist: bsublist(s;as;bs), 
uall: ∀[x:A]. B[x], 
dset: DSet
Lemmas referenced : 
null_wf, 
set_car_wf, 
diff_wf, 
list_wf, 
dset_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
sqequalRule, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
dependent_functionElimination, 
hypothesisEquality, 
inhabitedIsType, 
universeIsType
Latex:
\mforall{}s:DSet.  \mforall{}as,bs:|s|  List.    (bsublist(s;as;bs)  \mmember{}  \mBbbB{})
Date html generated:
2019_10_16-PM-01_04_58
Last ObjectModification:
2018_10_08-AM-10_32_01
Theory : list_2
Home
Index