Nuprl Lemma : lmin_wf
∀s:DSet. ∀as,bs:|s| List.  (lmin(s;as;bs) ∈ |s| List)
Proof
Definitions occuring in Statement : 
lmin: lmin(s;as;bs)
, 
list: T List
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
dset: DSet
, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
lmin: lmin(s;as;bs)
, 
uall: ∀[x:A]. B[x]
, 
dset: DSet
Lemmas referenced : 
diff_wf, 
list_wf, 
set_car_wf, 
dset_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
sqequalRule, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
inhabitedIsType, 
universeIsType, 
isectElimination, 
setElimination, 
rename
Latex:
\mforall{}s:DSet.  \mforall{}as,bs:|s|  List.    (lmin(s;as;bs)  \mmember{}  |s|  List)
Date html generated:
2019_10_16-PM-01_04_25
Last ObjectModification:
2018_10_08-AM-10_21_33
Theory : list_2
Home
Index