Nuprl Lemma : comb_for_mset_inj_wf_f

λs,x,z. mset_inj{s}(x) ∈ s:DSet ⟶ x:|s| ⟶ (↓True) ⟶ FiniteSet{s}


Proof




Definitions occuring in Statement :  mset_inj: mset_inj{s}(x) finite_set: FiniteSet{s} squash: T true: True member: t ∈ T lambda: λx.A[x] function: x:A ⟶ B[x] dset: DSet set_car: |p|
Definitions unfolded in proof :  member: t ∈ T squash: T all: x:A. B[x] uall: [x:A]. B[x] prop: dset: DSet
Lemmas referenced :  mset_inj_wf_f squash_wf true_wf set_car_wf dset_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality sqequalHypSubstitution imageElimination cut lemma_by_obid dependent_functionElimination thin hypothesisEquality equalityTransitivity hypothesis equalitySymmetry isectElimination setElimination rename

Latex:
\mlambda{}s,x,z.  mset\_inj\{s\}(x)  \mmember{}  s:DSet  {}\mrightarrow{}  x:|s|  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  FiniteSet\{s\}



Date html generated: 2016_05_16-AM-07_51_29
Last ObjectModification: 2015_12_28-PM-06_00_12

Theory : mset


Home Index