Nuprl Lemma : mset_inj_wf_f
∀s:DSet. ∀x:|s|.  (mset_inj{s}(x) ∈ FiniteSet{s})
Proof
Definitions occuring in Statement : 
mset_inj: mset_inj{s}(x), 
finite_set: FiniteSet{s}, 
all: ∀x:A. B[x], 
member: t ∈ T, 
dset: DSet, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
finite_set: FiniteSet{s}, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
nat: ℕ, 
prop: ℙ, 
dset: DSet, 
mset_inj: mset_inj{s}(x), 
mset_count: x #∈ a, 
mk_mset: mk_mset(as), 
count: a #∈ as, 
so_lambda: λ2x.t[x], 
top: Top, 
so_apply: x[s], 
int_add_grp: <ℤ+>, 
grp_op: *, 
pi2: snd(t), 
pi1: fst(t), 
infix_ap: x f y, 
grp_id: e, 
b2i: b2i(b), 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
ifthenelse: if b then t else f fi , 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q
Lemmas referenced : 
mset_inj_wf, 
le_wf, 
mset_count_wf, 
set_car_wf, 
dset_wf, 
mon_for_cons_lemma, 
istype-void, 
mon_for_nil_lemma, 
set_eq_wf, 
eqtt_to_assert, 
assert_of_dset_eq, 
istype-false, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
dependent_set_memberEquality_alt, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
inhabitedIsType, 
sqequalRule, 
functionIsType, 
universeIsType, 
isectElimination, 
applyEquality, 
lambdaEquality_alt, 
setElimination, 
rename, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
isect_memberEquality_alt, 
voidElimination, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_isectElimination, 
independent_pairFormation, 
dependent_pairFormation_alt, 
equalityIsType1, 
promote_hyp, 
instantiate, 
cumulativity, 
independent_functionElimination, 
because_Cache
Latex:
\mforall{}s:DSet.  \mforall{}x:|s|.    (mset\_inj\{s\}(x)  \mmember{}  FiniteSet\{s\})
Date html generated:
2019_10_16-PM-01_06_54
Last ObjectModification:
2018_10_08-PM-00_08_36
Theory : mset
Home
Index