Nuprl Lemma : mset_inj_wf_f

s:DSet. ∀x:|s|.  (mset_inj{s}(x) ∈ FiniteSet{s})


Proof




Definitions occuring in Statement :  mset_inj: mset_inj{s}(x) finite_set: FiniteSet{s} all: x:A. B[x] member: t ∈ T dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T finite_set: FiniteSet{s} uall: [x:A]. B[x] subtype_rel: A ⊆B nat: prop: dset: DSet mset_inj: mset_inj{s}(x) mset_count: #∈ a mk_mset: mk_mset(as) count: #∈ as so_lambda: λ2x.t[x] top: Top so_apply: x[s] int_add_grp: <ℤ+> grp_op: * pi2: snd(t) pi1: fst(t) infix_ap: y grp_id: e b2i: b2i(b) implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b rev_implies:  Q iff: ⇐⇒ Q
Lemmas referenced :  mset_inj_wf le_wf mset_count_wf set_car_wf dset_wf mon_for_cons_lemma istype-void mon_for_nil_lemma set_eq_wf eqtt_to_assert assert_of_dset_eq istype-false eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut dependent_set_memberEquality_alt introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis inhabitedIsType sqequalRule functionIsType universeIsType isectElimination applyEquality lambdaEquality_alt setElimination rename equalityTransitivity equalitySymmetry natural_numberEquality isect_memberEquality_alt voidElimination unionElimination equalityElimination productElimination independent_isectElimination independent_pairFormation dependent_pairFormation_alt equalityIsType1 promote_hyp instantiate cumulativity independent_functionElimination because_Cache

Latex:
\mforall{}s:DSet.  \mforall{}x:|s|.    (mset\_inj\{s\}(x)  \mmember{}  FiniteSet\{s\})



Date html generated: 2019_10_16-PM-01_06_54
Last ObjectModification: 2018_10_08-PM-00_08_36

Theory : mset


Home Index