Nuprl Lemma : mset_inj_wf_f
∀s:DSet. ∀x:|s|.  (mset_inj{s}(x) ∈ FiniteSet{s})
Proof
Definitions occuring in Statement : 
mset_inj: mset_inj{s}(x)
, 
finite_set: FiniteSet{s}
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
dset: DSet
, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
finite_set: FiniteSet{s}
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
prop: ℙ
, 
dset: DSet
, 
mset_inj: mset_inj{s}(x)
, 
mset_count: x #∈ a
, 
mk_mset: mk_mset(as)
, 
count: a #∈ as
, 
so_lambda: λ2x.t[x]
, 
top: Top
, 
so_apply: x[s]
, 
int_add_grp: <ℤ+>
, 
grp_op: *
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
infix_ap: x f y
, 
grp_id: e
, 
b2i: b2i(b)
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
ifthenelse: if b then t else f fi 
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
Lemmas referenced : 
mset_inj_wf, 
le_wf, 
mset_count_wf, 
set_car_wf, 
dset_wf, 
mon_for_cons_lemma, 
istype-void, 
mon_for_nil_lemma, 
set_eq_wf, 
eqtt_to_assert, 
assert_of_dset_eq, 
istype-false, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
dependent_set_memberEquality_alt, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
inhabitedIsType, 
sqequalRule, 
functionIsType, 
universeIsType, 
isectElimination, 
applyEquality, 
lambdaEquality_alt, 
setElimination, 
rename, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
isect_memberEquality_alt, 
voidElimination, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_isectElimination, 
independent_pairFormation, 
dependent_pairFormation_alt, 
equalityIsType1, 
promote_hyp, 
instantiate, 
cumulativity, 
independent_functionElimination, 
because_Cache
Latex:
\mforall{}s:DSet.  \mforall{}x:|s|.    (mset\_inj\{s\}(x)  \mmember{}  FiniteSet\{s\})
Date html generated:
2019_10_16-PM-01_06_54
Last ObjectModification:
2018_10_08-PM-00_08_36
Theory : mset
Home
Index